

1

|2|

SAT and SMT Solving

Selected Solutions 5

• $x = y \land y = z \land x \neq w$ is EQ-satisfiable. a) For instance, take the model \mathcal{M} with carrier $A = \{0, 1\}$ and where $=^{\mathcal{M}}$ is interpreted as equality (i.e., $=\mathcal{M} = \{(0,0), (1,1)\}$); together with the environment l(x) = l(y) =l(z) = 0 and l(w) = 1. • $x = y \wedge y = z \wedge x \neq w \wedge w = z$ is not EQ-satisfiable, because by transitivity and symmetry x = y and y = z and w = z imply x = w. • $a = b \land P(f(a)) \land \neg P(f(b))$ is not EUF-satisfiable, intuitively because a = b implies f(a) = f(b), so P(f(a)) implies P(f(b)). • $a \neq b \land f(a) = b \land g(a, b) = b$ is EUF-satisfiable. For instance, take the model \mathcal{M} with carrier $A = \{0, 1\}$ and where $=^{\mathcal{M}}$ is interpreted as equality, $\mathbf{a}^{\mathcal{M}}(x) = 0$, $\mathbf{b}^{\mathcal{M}}(x) = 1$, $\mathbf{f}^{\mathcal{M}}(x) = 1 - x$, and $\mathbf{g}^{\mathcal{M}}(x, y) = y$. • $x = y \land y = z \land x \neq w \vDash_{\mathsf{EQ}} w \neq z$ holds because $x = y \land y = z \land x \neq w \land w = z$ b) is EQ-unsatisfiable: intuitively, by transitivity and symmetry, the three equations imply x = w. • $x \neq y \land y \neq z \vDash_{\mathsf{EQ}} x \neq z$ does not hold because $x \neq y \land y \neq z \land x = z$. For instance, take the model \mathcal{M} with carrier $A = \{0, 1\}$ and where $=^{\mathcal{M}}$ is interpreted as equality (i.e., $=\mathcal{M} = \{(0,0), (1,1)\}$); together with the environment l(x) = l(z) = 0and l(y) = 1. • $a = f(a) \land g(a, b) = g(b, a) \vDash_{\mathsf{EUF}} g(f(a), b) = g(b, f(f(f(a))))$ holds because $a = f(a) \land$ $g(a,b) = g(b,a) \land g(f(a),b) \neq g(b,f(f(f(a))))$ is unsatisfiable. Intuitively, a = f(a)implies f(f(a))) = a, so g(a, b) = g(b, a) implies g(f(a), b) = g(b, f(f(f(a)))). • $a = b \land f(a) \neq g(b, b) \vDash_{\mathsf{EUF}} f(b) \neq g(a, b) \text{ holds as } a = b \land f(a) \neq g(b, b) \land f(b) = g(a, b)$ is unsatisfiable. • $a = b \wedge f(a) \neq g(b, b) \equiv_{FUF} f(b) \neq g(a, b)$ does not hold: The entailment from left to right holds (see above), but $f(b) \neq g(a,b) \vDash_{\mathsf{EUF}} a = b \land f(a) \neq g(b,b)$ does not, i.e., $f(b) \neq g(a, b) \land (a \neq b \lor f(a) \neq g(b, b))$ is satisfiable. For instance, $f(b) \neq g(a, b) \land a \neq b$ is satisfied by the model \mathcal{M} with carrier $A = \{0, 1\}$ and where $=^{\mathcal{M}}$ is interpreted as equality $\mathbf{a}^{\mathcal{M}}(x) = 0$, $\mathbf{b}^{\mathcal{M}}(x) = 1$, $\mathbf{f}^{\mathcal{M}}(x) = 0$, and $\mathbf{g}^{\mathcal{M}}(x, y) = 1$. (a) For the abbreviations

$$\underbrace{\mathsf{a}=\mathsf{b}}_1 \land (\underbrace{\mathsf{b}=\mathsf{c}}_2 \lor \underbrace{\mathsf{b}=\mathsf{d}}_3) \land (\neg(\underbrace{\mathsf{f}(\mathsf{a})=\mathsf{f}(\mathsf{c})}_4 \lor \neg(\underbrace{\mathsf{f}(\mathsf{a})=\mathsf{f}(\mathsf{b})}_5))) \land \neg(\underbrace{\mathsf{f}(\mathsf{b})=\mathsf{f}(\mathsf{d})}_6)$$

the propositional skeleton is $\varphi := 1 \wedge (2 \vee 3) \wedge (\overline{4} \vee \overline{5}) \wedge \overline{6}$. The following DPLL(T) sequence

shows unsatisfiability:

$$\begin{split} \| \varphi \Longrightarrow 1 \| \varphi & \text{unit propagate} \\ \implies 1 \overline{6} \| \varphi & \text{unit propagate} \\ \implies 1 \overline{6} 5 \| \varphi & T\text{-propagate} 1 \vDash_{\mathsf{EUF}} 5 \\ \implies 1 \overline{6} 5 \overline{4} \| \varphi & \text{unit propagate} \\ \implies 1 \overline{6} 5 \overline{4} \overline{3} \| \varphi & T\text{-propagate} \overline{6} \vDash_{\mathsf{EUF}} \overline{3} \\ \implies 1 \overline{6} 5 \overline{4} \overline{3} 2 \| \varphi & \text{unit propagate} \\ \implies 1 \overline{6} 5 \overline{4} \overline{3} 2 \| \varphi & \text{unit propagate} \\ \implies 1 \overline{6} 5 \overline{4} \overline{3} 2 \| \varphi, C & T\text{-learn} \\ \implies \mathsf{FailState} & \mathsf{fail} \end{split}$$

In the *T*-learn step, the current literal list is recognized to be EUF-unsatisfiable, so the clause $C = \overline{1} \lor 6 \lor \overline{5} \lor 4 \lor 3 \lor \overline{2}$ negating the assignment is added. A smaller clause that works would be $C' = \overline{1} \lor \overline{2} \lor 4$.

(b) For the abbreviations

$$\underbrace{f(b) = g(f(a), b)}_{1} \land \underbrace{f(f(a)) = g(b, b)}_{2} \land \underbrace{(f(a) = a}_{3} \lor \underbrace{f(a) = b}_{4} \land \underbrace{g(a, b) = b}_{5} \land \underbrace{(\neg(\underbrace{f(b) = b}_{6}) \lor \neg(\underbrace{f(g(a, b)) = g(b, b}_{7}))}_{7}$$

the propositional skeleton is $1 \wedge 2 \wedge (3 \vee 4) \wedge 5 \vee (\overline{6} \vee \overline{7})$. The following DPLL(T) sequence shows satisfiability:

$\parallel \varphi \Longrightarrow^* 125 \parallel \varphi$	unit propagate
$\Longrightarrow 1\ 2\ 5\ 3^d \parallel \varphi$	decide
$\Longrightarrow 1\ 2\ 5\ 3^d\ 6 \parallel \varphi$	$T\text{-}propagate\ 1 \land 3 \land 5 \vDash_{EUF} 6$
$\Longrightarrow 1\ 2\ 5\ 3^d\ 6\ \overline{7}\parallel \varphi$	unit propagate

and it can be checked that the resulting assignment is EUF-satisfiable: For instance, take the model \mathcal{M} with carrier $A = \{0, 1\}$ and where $=^{\mathcal{M}}$ is interpreted as equality, $\mathsf{a}^{\mathcal{M}}(x) = 0$, $\mathsf{b}^{\mathcal{M}}(x) = 1$, $\mathsf{f}^{\mathcal{M}}(x) = x$, and $\mathsf{g}^{\mathcal{M}}(x, y) = 1 - x$.

See appetizers.py.

See matching.py.

3

4