	<u>Ç</u>	universität Innstruct Institut för Informatik
SAT and SMT Solving	WS 2022	LVA 703147

Solutions 7

1 The constraints can be visualized as follows:

a) As a variable order, the following calculation uses $s_1 > s_2 > x > y$. At the start all variables are assigned 0, and the following initial tableau is constructed:

$$\begin{array}{ccc} x & y \\ s_1 & \begin{pmatrix} -1 & 1 \\ -2 & -1 \end{pmatrix} \\ \end{array}$$

(1) The bound for s_2 is violated. In order to decrease s_2 , we need to increase x or y. Both are suitable for pivoting, because they do not have bounds. We pick y (to stick to Bland's Rule). This results in the following new tableau:

$$\begin{array}{ccc} x & s_2 \\ s_1 & \begin{pmatrix} -3 & -1 \\ -2 & -1 \end{pmatrix} \end{array}$$

Now s_2 is assigned to its bound -4, and x is kept at 0. According to the new tableau, we calculate theremaining values for the new assignment $s_1 = 4$, y = 4.

(2) Unfortunately now the bound for s_1 is violated. In order to decrease s_1 , we have to increase x or s_2 . Since s_2 is already at its upper bound, only x is suitable. We obtain the following tableau:

$$\begin{array}{ccc} & s_1 & s_2 \\ x & \left(-\frac{1}{3} & -\frac{1}{3} \\ y & \left(\frac{2}{3} & -\frac{1}{3} \right) \end{array} \end{array}$$

We set s_1 to its bound 1, while s_2 remains at -4. This implies x = 1 and y = 2. With this assignment the bounds are satisfied. In the picture, the assignments obtained in this Simplex search are shown in red.

- b) Suppose we instead use a variable order where y > x, like $y > x > s_2 > s_1$.
 - (1) The order does not change the initial tableau; again s_2 violates its bounds and both x and y are suitable. But according to Bland's Rule we now pivot with x, to obtain

$$\begin{array}{ccc} & s_2 & y \\ s_1 & \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{array} \right) \end{array}$$

We set $s_2 = -4$ and leave y = 0, which implies $s_1 = -2$ and x = 2, which satisfies the bounds. In the picture, this Simplex search are shown in blue.

As a variable order, the following calculation uses $s_1 > \cdots > s_4 > x > y$. At the start all variables are assigned 0, and the following initial tableau is constructed:

	x	y	
s_1	$\begin{pmatrix} 0 \end{pmatrix}$	1	$s_1 \leq 4$
s_2	-3	1	$s_2 \leq -1$
s_3	-1	-1	$s_3 \leq -5$
s_4	$\begin{pmatrix} 2 \end{pmatrix}$	-1 /	$s_4 \leq 3$

(1) The bounds for s_2 and s_3 are violated. Choosing s_3 , both x and y are suitable for pivoting. We pick y (to stick to Bland's Rule). This results in the following new tableau:

	x	s_3	
s_1	(-1)	-1	$s_1 \leq 4$
s_2	-4	-1	$s_2 \leq -1$
y	-1	-1	$s_3 \leq -5$
s_4	$\sqrt{3}$	1 /	$s_4 \leq 3$

Now s_3 is assigned to its bound -5, and x is kept at 0. The values of the remaining variables are computed from the new tableau: $s_1 = 15$, $s_2 = 5$, y = 5, $s_4 = -5$.

(2) The new assignment violates the bounds for s_1 and s_2 . When choosing s_2 (again according to Bland's Rule), only x is suitable for pivoting. (In order to decrease s_2 we would have to *increase* s_3 , but s_3 is already at its upper bound and thus not suitable.) This results in the following new tableau:

$$\begin{array}{ccc} s_2 & s_3 \\ s_1 & \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{1}{4} & -\frac{1}{4} \\ y \\ s_4 & \begin{pmatrix} \frac{1}{4} & -\frac{3}{4} \\ -\frac{1}{4} & -\frac{3}{4} \\ -\frac{3}{4} & \frac{1}{4} \end{pmatrix} & s_1 \leq 4 \\ s_2 \leq -1 \\ s_3 \leq -5 \\ s_4 \leq 3 \end{array}$$

Now s_2 is assigned to its bound -1, and s_3 remains at -5. The values of the remaining variables are computed from the new tableau: $s_1 = 3\frac{1}{2}$, $x = 1\frac{1}{2}$, $y = 3\frac{1}{2}$, $s_4 = -\frac{1}{2}$.

This assignment satisfies all bounds. The solution search is illustrated in the picture.

- 3 See the file santa.py.
- 4 See the archive simplex.