SAT and SMT Solving
WS 2022
LVA 703147

Solutions 7
May 17, 2022

1 The constraints can be visualized as follows:

$$
\begin{array}{rlr}
-x+y=s_{1} & s_{1} \leq 1 \\
-2 x-y=s_{2} & s_{2} \leq-4
\end{array}
$$

a) As a variable order, the following calculation uses $s_{1}>s_{2}>x>y$. At the start all variables are assigned 0 , and the following initial tableau is constructed:

$$
\left.\begin{array}{c}
\\
s_{1} \\
s_{2}
\end{array} \begin{array}{cc}
x & y \\
-1 & 1 \\
-2 & -1
\end{array}\right)
$$

(1) The bound for s_{2} is violated. In order to decrease s_{2}, we need to increase x or y. Both are suitable for pivoting, because they do not have bounds. We pick y (to stick to Bland's Rule). This results in the following new tableau:

$$
\left.\begin{array}{c}
\\
s_{1} \\
y
\end{array} \begin{array}{cc}
x & s_{2} \\
\left(\begin{array}{l}
-3
\end{array}\right. & -1 \\
-2 & -1
\end{array}\right)
$$

Now s_{2} is assigned to its bound -4 , and x is kept at 0 . According to the new tableau, we calculate theremaining values for the new assignment $s_{1}=4, y=4$.
(2) Unfortunately now the bound for s_{1} is violated. In order to decrease s_{1}, we have to increase x or s_{2}. Since s_{2} is already at its upper bound, only x is suitable. We obtain the following tableau:

$$
\left.\begin{array}{l}
\\
x \\
y
\end{array} \begin{array}{rr}
s_{1} & s_{2} \\
-\frac{1}{3} & -\frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right)
$$

We set s_{1} to its bound 1 , while s_{2} remains at -4 . This implies $x=1$ and $y=2$. With this assignment the bounds are satisfied. In the picture, the assignments obtained in this Simplex search are shown in red.
b) Suppose we instead use a variable order where $y>x$, like $y>x>s_{2}>s_{1}$.
(1) The order does not change the initial tableau; again s_{2} violates its bounds and both x and y are suitable. But according to Bland's Rule we now pivot with x, to obtain

$$
\begin{gathered}
\\
s_{1} \\
x
\end{gathered} \begin{array}{cc}
s_{2} & y \\
\left(\begin{array}{rr}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

We set $s_{2}=-4$ and leave $y=0$, which implies $s_{1}=-2$ and $x=2$, which satisfies the bounds. In the picture, this Simplex search are shown in blue.

2 The constraints can be visualized as follows:

$$
\begin{aligned}
& y \leq 4 \\
&-3 x+y \leq-1 \\
&-x-y \leq-5 \\
& 2 x-y \leq 3
\end{aligned}
$$

As a variable order, the following calculation uses $s_{1}>\cdots>s_{4}>x>y$. At the start all variables are assigned 0 , and the following initial tableau is constructed:
\(\left.$$
\begin{array}{l} \\
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}\end{array}
$$ \quad \begin{array}{rr}x \& y \\
0 \& 1 \\
-3 \& 1 \\
-1 \& -1 \\

2 \& -1\end{array}\right)\)| |
| :--- |
| $s_{1} \leq 4$ |
| $s_{2} \leq-1$ |
| $s_{3} \leq-5$ |
| $s_{4} \leq 3$ |

(1) The bounds for s_{2} and s_{3} are violated. Choosing s_{3}, both x and y are suitable for pivoting. We pick y (to stick to Bland's Rule). This results in the following new tableau:

$$
\begin{gathered}
\\
s_{1} \\
s_{2} \\
y \\
s_{4}
\end{gathered} \begin{array}{rr}
x & s_{3} \\
\left(\begin{array}{rr}
-1 & -1 \\
-4 & -1 \\
-1 & -1 \\
3 & 1
\end{array}\right)
\end{array} \begin{aligned}
& \\
& s_{1} \leq 4 \\
& s_{2} \leq-1 \\
& s_{3} \leq-5 \\
& s_{4} \leq 3
\end{aligned}
$$

Now s_{3} is assigned to its bound -5 , and x is kept at 0 . The values of the remaining variables are computed from the new tableau: $s_{1}=15, s_{2}=5, y=5, s_{4}=-5$.
(2) The new assignment violates the bounds for s_{1} and s_{2}. When choosing s_{2} (again according to Bland's Rule), only x is suitable for pivoting. (In order to decrease s_{2} we would have to increase s_{3}, but s_{3} is already at its upper bound and thus not suitable.) This results in the following new tableau:

$$
\left.\begin{array}{c}
\\
s_{1} \\
x \\
y \\
s_{4}
\end{array} \begin{array}{rr}
s_{2} & s_{3} \\
\begin{array}{r}
4 \\
4
\end{array} & -\frac{3}{4} \\
-\frac{1}{4} & -\frac{1}{4} \\
\frac{1}{4} & -\frac{3}{4} \\
-\frac{3}{4} & \frac{1}{4}
\end{array}\right) \begin{aligned}
& \\
& s_{1} \leq 4 \\
& s_{2} \leq \\
& s_{3} \leq \\
& s_{3} \leq \\
& s_{4} \leq \\
& \hline
\end{aligned}
$$

Now s_{2} is assigned to its bound -1 , and s_{3} remains at -5 . The values of the remaining variables are computed from the new tableau: $s_{1}=3 \frac{1}{2}, x=1 \frac{1}{2}, y=3 \frac{1}{2}, s_{4}=-\frac{1}{2}$.

This assignment satisfies all bounds. The solution search is illustrated in the picture.

3 See the file santa.py
4 See the archive simplex

