1 The following constraints and pictures match:
(1)-(B) The solution space is the triangle in the picture. The problem is unsatisfiable over \mathbb{Z} but satisfiable over \mathbb{Q}, and bounded.
(2)-(C) The solution space between the pink and the yellow line. The problem is unsatisfiable over \mathbb{Z} but satisfiable over \mathbb{Q}, and unbounded.
(3)-(D) The solution space is the area containing coordinate $(1,0)$. The problem is satisfiable over \mathbb{Z} and \mathbb{Q}, and unbounded.
(4)-(E) The problem is unsatisfiable over \mathbb{Z} and \mathbb{Q}, and by definition bounded.
(5)-(A) The solution space is the triangle in the picture. The problem is bounded, and satisfiable over both \mathbb{Q} and \mathbb{Z}, e.g. by $x=2, y=2$.
(6)-(F) The solution space is the triangle in the picture. The problem is bounded, and satisfiable over both \mathbb{Q} and \mathbb{Z}, e.g. by $x=1, y=2$.

3 (a) From the initial tableau (left) a solution to the problem over \mathbb{R}^{2} can be obtained with the Simplex algorithm, together with a final tableau (right):

$$
\left.\begin{array}{l}
\\
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array} \begin{array}{rl}
x & y \\
-3 & 2 \\
0 & 1 \\
-2 & -1 \\
3 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leq 1 \\
& s_{2} \leq 4 \\
& s_{3} \leq-5 \\
& s_{4} \leq 7
\end{aligned} \quad \begin{array}{r}
s_{3} \\
x \\
y \\
s_{4}
\end{array}\left(\begin{array}{rr}
s_{2} & s_{1} \\
-2 \frac{1}{3} & 1 \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} \\
1 & 0 \\
1 & -1
\end{array}\right) \begin{aligned}
& x=2 \frac{1}{3} \\
& y=4 \\
& s_{1}=1 \\
& s_{2}=4 \\
& s_{3}=-8 \frac{2}{3} \\
& s_{4}=3
\end{aligned}
$$

We pick the variable x which is assigned $2 \frac{1}{3} \notin Z$, so $c=\frac{1}{3}$. Since there are only upper bounds, the set of nonbasic variables L is empty and the Gomory cut inequality simplifies to the following form:

$$
-\sum_{j \in U^{-}} \frac{A_{i j}}{1-c}\left(u_{j}-x_{j}\right)+\sum_{j \in U^{+}} \frac{A_{i j}}{c}\left(u_{j}-x_{j}\right) \geq 1
$$

Due to the coefficients in the tableau we have $U^{-}=\left\{s_{1}\right\}$ and $U^{+}=\left\{s_{2}\right\}$. So (\star) amounts to

$$
-\left(-\frac{1}{3} / \frac{2}{3}\right)\left(1-s_{1}\right)+\left(\frac{2}{3} / \frac{1}{3}\right)\left(4-s_{2}\right) \geq 1
$$

or equivalently

$$
-\frac{1}{2} s_{1}-2 s_{2} \geq-7 \frac{1}{2}
$$

Using the equations $s_{1}=-3 x+2 y$ and $s_{2}=y$, this is equivalent to

$$
-\frac{1}{2}(-3 x+2 y)-2 y \geq-7 \frac{1}{2}
$$

After some simplifications, we get

$$
\frac{5}{2}+\frac{1}{2} x \geq y
$$

This cut corresponds to the magenta line in the picture, cutting off the last solution:

