
SAT and SMT Solving WS 2022 LVA 703147

Selected Solutions 10 January 13, 2023

1 The simplest bit blasting transformations for the signed comparisons ≥s and >s check for the
sign bit (which is 1 for negative numbers), and afterwards relies on the respective unsigned
comparisons:

Br(xk+1 ≥s yk+1) =(¬xk ∧ yk) ∨ (xk ∧ yk ∧B(y[k − 1:0] ≥u x[k − 1:0])) ∨
(¬xk ∧ ¬yk ∧B(x[k − 1:0] ≥u y[k − 1:0]))

Br(xk+1 >s yk+1) =Br(xk+1 ≥s yk+1) ∧Br(xk+1 ̸= yk+1)

2 (a) The replacement is incorrect. For example, the SMT encoding

(declare-const x (_ BitVec 8))

(declare-const c1 (_ BitVec 8))

(declare-const c2 (_ BitVec 8))

(declare-const before (_ BitVec 8))

(declare-const after (_ BitVec 8))

(assert (= before (bvudiv (bvlshr x c1) c2)))

(assert (= after (bvudiv x (bvshl c1 c2))))

(assert (not (= before after)))

(check-sat)

(get-model)

shows that for c1 = x018, c2 = x058, and x = x448 the left-hand side evaluates to x068
while the right-hand side evaluates to x028. A counterexample is also found when the
bit vector size is changed to 16.

(b) The replacement is incorrect. For example, the SMT encoding

(declare-const p (_ BitVec 8))

(declare-const x (_ BitVec 8))

(declare-const a (_ BitVec 8))

(declare-const b (_ BitVec 8))

(declare-const before (_ BitVec 8))

(declare-const after (_ BitVec 8))

(define-fun is-power-of-two ((x (_ BitVec 8))) Bool

(= #x00 (bvand x (bvsub x #x01))))

(assert (is-power-of-two p))

(assert (= before (bvudiv x (bvlshr (bvshl p a) b))))

(assert (= after (bvudiv x (bvshl p (bvsub a b)))))

(assert (not (= before after)))

(check-sat)

(get-model)



shows that for a = x008, b = x028, p = x808, and x = x7e8 the left-hand side evaluates
to x038 while the right-hand side evaluates to xff8. A counterexample is also found when
the bit vector size is changed to 16.

(c) The replacement is correct since the following SMT encoding is unsatisfiable:

(declare-const a (_ BitVec 8))

(declare-const b (_ BitVec 8))

(declare-const before (_ BitVec 8))

(declare-const after (_ BitVec 8))

(assert (= before (bvadd (bvsub #x00 a) (bvsub #x00 b))))

(assert (= after (bvsub #x00 (bvadd a b))))

(assert (not (= before after)))

(check-sat)

This is still true when changing the bit width to 16.

4 See abs and avg.py. In the following, we assume for simplicity that all numbers have four
bits.

(a) If the shift to compute the mask is implemented arithmetically (shifting in sign bits), the
hack is correct. Otherwise, a counterexample can be found. For the first hack, if x=-6,
the hack yields -6 instead of 6. For the second, if x=-3, the hack yields -5 instead of 3.

(b) First case: x and y are unsigned. Then (x + y) >> 1 is correct (the shift will always
shift in 0s, according to the C standard). However, ((x ^ y) >> 1) + (x & y) can
behave differently than (x + y) / 2, e.g. for x = 10 and y = 14 the division overflows
and yields 4 while the bit hack avoids the overflow and gives 12. (So one could also say
that the hack is more correct.)

Second case: x and y are signed. For (x + y) >> 1, the result changes now depending
on the implementation of the right shift operator. However, for both implementations the
results differ: If x = -1 and y = 0, the expression (x+y)/2 yields 0. Using an arithmetic
shift, (x + y) >> 1 yields -1, and using a logical shift 7. Also the second hack behaves
differently depending on the implementation of the shift operator, but differs in both cases
from (x+y)/2. If the shift is arithmetic, for x = 7 and y = -7 the expression (x+y)/2

evaluates to 0, while the hack yields -1. If the shift is logical, for x = 6 and y = -6 the
expression (x+y)/2 evaluates to 0, while the hack yields 7.

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/abs_and_avg.py

