$\sqrt{1}$ We add line numbers to the given program:

```
int main() \{
    char \(\mathrm{i}=0, \mathrm{j}=0, \mathrm{k}=0\);
    while (k < 127) \{
        \(\mathrm{i}=\mathrm{i}+1\);
        \(\mathrm{j}=\mathrm{j}+2\);
        \(\mathrm{k}=\mathrm{k}+3\);
        // assert( \(k=(i+j))\);
    \}
    return 0;
\}
```

(a) The program graph is as shown on the left; on the right a simplified, equivalent version.

(b) The following are the initial predicate, and the transition predicate for the simplified graph.

$$
\begin{aligned}
I(\langle p c, i, j, k\rangle)= & (p c=1) \\
T\left(\langle p c, i, j, k\rangle,\left\langle p c^{\prime}, i^{\prime}, j^{\prime}, k^{\prime}\right\rangle\right)= & \left(p c=1 \wedge p c^{\prime}=3 \wedge i^{\prime}=0 \wedge j^{\prime}=0 \wedge k^{\prime}=0\right) \vee \\
& \left(p c=3 \wedge p c^{\prime}=4 \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge k^{\prime}=k \wedge k<127\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge i^{\prime}=i+1 \wedge j^{\prime}=j+2 \wedge k^{\prime}=k+3\right) \vee \\
& \left(p c=7 \wedge p c^{\prime}=3 \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge k^{\prime}=k\right) \vee \\
& \left(p c=3 \wedge p c^{\prime}=9 \wedge i^{\prime}=i \wedge j^{\prime}=j \wedge k^{\prime}=k \wedge k \geq 127\right)
\end{aligned}
$$

Consider the following two candidate predicates to express a violation of the assertion.

$$
\begin{aligned}
P(\langle p c, i, j, k\rangle) & =(p c=7 \wedge k \neq i+j) \\
P^{\prime}(\langle p c, i, j, k\rangle) & =(p c=7 \wedge \operatorname{SignExt}(k, 64) \neq \operatorname{SignExt}(i, 64)+\operatorname{SignExt}(j, 64))
\end{aligned}
$$

(c) When representing i, j, and k as bitvectors of 8 bits (corresponding to the char type), and checking the condition P above, it is never violated. However, when checking the respective C program bmctest.c the assertion actually does get violated. Whaaaat?!

It turns out that property P does not reflect how the C program is actually executed. The reason is that when performing the comparison $\mathrm{i}+\mathrm{j}==\mathrm{k}$ in C , before the addition, i and j are implicitly type-converted to an int according to the C standard, and to perform a type-correct comparison, also k is promoted to an int. Since the types are signed, signbased extension happens. So in order to check this in an SMT formula, one has to use the above property P^{\prime} (assuming that an integer has 64 bits).
Using bounded model checking, indeed P^{\prime} is violated for $i=43, j=86$, and $k=-127$ (after the last addition $\mathrm{k}=\mathrm{k}+1$ overflowed): then $\mathrm{i}+\mathrm{j}$ evaluates to 129 (which can be represented without an overflow, due to the type conversion), while k still equals to -127 also after the type conversion.

See bmc.py
2 The produced model contains two trees, six monkeys, and twelve bananas, see more_monkeys.smt2. This model is minimal (because Z3 searches for small models).

3 One can take the following instantiations:

```
lives(agatha) ^ lives(butler) ^ lives(charles)
\forallxy. steal_from (x,y)-> hates (x,y) {x\mapsto charles, y\mapstoagatha}
\forallxy. steal_from (x,y)->\negricher (x,y) {
\forallx. hates(agatha, x)->\neg\mathrm{ hates(charles, }x)
hates(agatha, charles)
hates(agatha, agatha)
\forallx. hates(agatha, x) -> hates(butler, x) {x\mapsto agatha } {x\mapsto charles }
*. (lives (x)^\negricher (x, agatha)) }->\mathrm{ hates(butler, }x)\quad{x\mapsto\mathrm{ butler }
\forall. \neghates(x, agatha) \vee ᄀ.hates (x, butler) \vee ᄀhates(x, charles) 
steal_from(butler, agatha) \vee steal_from(charles, agatha)
```

The respective set of ground formulas (i.e., formulas without variables) is unsatisfiable, see dreadbury_mansion_ground.smt2.
However, in this case Z3 even recognizes unsatisfiability of the quantified problem.
4 See rushhour.py

