

Automata and Logic

1st EXAM

WS 2023/2024

LVA 703302

January 29, 2024

This exam consists of **four** exercises. The available points for each item are written in the margin. Explain your answers!

Determine whether the following sets over $\Sigma = \{a, b\}$ are regular or not. Prove your answers. 1 (a) $\{(a^n b)^m \mid n > m > 0\}$

- $\langle 10 \rangle$
- (b) $\{x^n \mid \#a(x) \neq \#b(x) \text{ and } n > 0\}$ $\langle 10 \rangle$
- $\langle 10 \rangle$ |2|(a) Construct a WSMO formula φ such that $L(\varphi) = L(M)$ for the following DFA M:

 $\langle 15 \rangle$ (b) Consider the WSMO formula $\varphi = \exists X. \exists y. y < x \land X(y)$. Give automata or regular expressions for the atomic subformulas and explain the operations needed to obtain the regularity of $L_a(\varphi)$.

Consider the LTL formula $\varphi = \neg(\neg a \cup X b) \land \neg G b$. 3

- (a) Transform φ into negation normal form ψ . $\langle 10 \rangle$
- (b) Use the construction from the lecture to compute the alternating Büchi automaton A_{ψ} . $\langle 15 \rangle$
- (c) Which of the following traces are accepted by A_{ψ} ? $\langle 10 \rangle$

i.
$$\{a\}\{b\}^{\omega}$$
 ii. $(\{a,b\}\varnothing\{a,b\})^{\omega}$ iii. \varnothing^{ω}

- $\langle 20 \rangle$ Determine whether the following statements are true or false. (Providing explanation is op-|4|tional.) Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.
 - 1. There exists a non-regular set that is accepted by an AFA.
 - 2. MONA is a tool that implements algorithms for Büchi automata.
 - 3. The class of ω -regular sets is effectively closed under intersection.
 - 4. In a completely defined tree automaton, all states are productive.
 - 5. Every Büchi automaton can be effectively transformed into a DBA.
 - 6. Every regular set is accepted by a DFA having exactly one final state.
 - 7. The automaton A_{φ} for the Presburger formula $\varphi: 3x 2y = 1$ has at most 14 states.
 - 8. The MSO formula $(\forall x. x = 0 \rightarrow X(x)) \land \neg (\forall x. X(x) \rightarrow \exists y. x < y \land X(y))$ is satisfiable.
 - 9. For the WMSO formula $\varphi = \forall y, y < x \rightarrow X(y)$ we have

$$L_a(\varphi) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}^* \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]^*$$

10. The equivalence relation \sim_M for the NBA M

$$\longrightarrow$$
 1 $\supset a$

over the alphabet $\Sigma = \{a, b\}$ has 2 equivalence classes.