

Automata and Logic WS 2023/2024 LVA 703302

1st EXAM – SOLUTIONS January 29, 2024

- (a) The set $A = \{(a^n b)^m \mid n > m > 0\}$ is not regular. Consider the strings $x_i = a^i b$ for $i \ge 1$. If i > j > 0 then $x_i(a^i b)^{j-1} \in A$ and $x_j(a^i b)^{j-1} \notin A$ and thus $x_i \ne_A x_j$. Hence \equiv_A has infinite index and thus the non-regularity of A follows from the Myhill–Nerode theorem.
 - (b) The set $B = \{x^n \mid \#a(x) \neq \#b(x) \text{ and } n > 0\}$ is not regular. Consider the strings $x_i = a^i$ for $i \geq 1$. If $i \neq j$ then $x_i b^i \notin B$ and $x_j b^i \in B$ and thus $x_i \not\equiv_B x_j$. Hence \equiv_B has infinite index and thus the non-regularity of B follows from the Myhill–Nerode theorem.
- (a) Using the construction from the lecture we obtain

$$\varphi = \exists X_1. \exists X_2. \exists X_3. \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land \left(\forall x. \neg P_a(x) \land \neg P_b(x) \rightarrow \ell \leqslant x \right) \land \psi_1 \land \psi_2 \land \psi_3 \land \psi_4$$

with

$$\psi_{1} = X_{1}(0)$$

$$\psi_{2} = \forall x. x \leq \ell \rightarrow (X_{1}(x) \vee X_{2}(x) \vee X_{3}(x)) \wedge \neg (X_{1}(x) \wedge X_{2}(x)) \wedge \neg (X_{1}(x) \wedge X_{3}(x)) \wedge \neg (X_{2}(x) \wedge X_{3}(x))$$

$$\psi_{3} = \forall x. x < \ell \rightarrow (X_{1}(x) \wedge P_{a}(x) \wedge \exists y. y = x + 1 \wedge X_{2}(y)) \vee (X_{1}(x) \wedge P_{b}(x) \wedge \exists y. y = x + 1 \wedge X_{1}(y)) \vee (X_{2}(x) \wedge P_{a}(x) \wedge \exists y. y = x + 1 \wedge X_{2}(y)) \vee (X_{2}(x) \wedge P_{b}(x) \wedge \exists y. y = x + 1 \wedge X_{3}(y)) \vee (X_{3}(x) \wedge P_{a}(x) \wedge \exists y. y = x + 1 \wedge X_{2}(y)) \vee (X_{3}(x) \wedge P_{b}(x) \wedge \exists y. y = x + 1 \wedge X_{3}(y))$$

$$\psi_{4} = X_{1}(\ell) \vee X_{3}(\ell)$$

 $\psi_4 = \Lambda_1(\iota) \vee \Lambda_3(\iota)$

(b) First consider the subformula $\psi = y < x \land X(y)$ with $\mathsf{FV}(\psi) = (x, y, X)$. We have

$$L_a(y < x) = {0 \choose 0}^* {0 \choose 1} {0 \choose 0}^* {1 \choose 0} {0 \choose 0}^*$$

$$L_a(X(y)) = \left[{0 \choose 0} + {0 \choose 1}\right]^* {1 \choose 1} \left[{0 \choose 0} + {0 \choose 1}\right]^*$$

and compute

$$\begin{split} L_1 &= \mathsf{drop}_3^{-1}(L_a(y < x)) = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^* \begin{pmatrix} 1 \\ 0 \\ * \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^* \begin{pmatrix} 0 \\ 1 \\ * \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}^* \\ L_2 &= \mathsf{drop}_1^{-1}(L_a(X(y))) = \left[\begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} * \\ 0 \\ 1 \end{pmatrix} \right]^* \begin{pmatrix} * \\ 1 \\ 1 \end{pmatrix} \left[\begin{pmatrix} * \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} * \\ 0 \\ 1 \end{pmatrix} \right]^* \end{split}$$

We have $L_a(\psi) = (L_1 \cap L_2) \cap L(\mathcal{A}_{2,1})$. Here $\mathcal{A}_{2,1}$ is a DFA to check the admissibility condition. For $\chi = \exists y. y < x \land X(y)$ we obtain $L_a(\chi) = \mathsf{stz}(\mathsf{drop}_2(L_a(\psi)))$. Finally, $L_a(\varphi) = \mathsf{stz}(\mathsf{drop}_3(L_a(\chi)))$.

- 3 (a) We have $\varphi = \neg(\neg a \cup X b) \land \neg G b \equiv (a R \neg X b) \land F \neg b \equiv (a R X \neg b) \land (\top \cup \neg b)$.
 - (b) Starting from the negation normal form ψ of part (a) we obtain the ABA

$$A_{\psi} = (\mathcal{C}_{+}(\psi), 2^{\mathsf{AP}}, \Delta, \psi, \{a \,\mathsf{R}\,\mathsf{X}\,\neg b\})$$

with $C_+(\psi) = \{a, b, \neg b, \mathsf{X} \, \neg b, a \, \mathsf{R} \, \mathsf{X} \, \neg b, \top, \top \, \mathsf{U} \, \neg b, \psi\}$ and Δ defined as follows:

	Ø	$\{a\}$	\set{b}	$\{a,b\}$
a		Т		Т
b		\perp	Т	Т
$\neg b$	Т	Т	\perp	\perp
$X \neg b$	$\neg b$	$\neg b$	$\neg b$	$\neg b$
$a RX \neg b$	$\neg b \wedge a RX \neg b$	$\neg b$	$\neg b \wedge a R X \neg b$	$\lnot b$
Т	T	Т	T	T
op U eg b	Т	Т	op U eg b	op U eg b
ψ	$\neg b \wedge a RX \neg b$	$\neg b$	$\neg b \wedge a R X \neg b \wedge \top U \neg b$	$\neg b \wedge \top U \neg b$

(c) The trace $\{a\}\{b\}^{\omega}$ is not accepted since

cannot be completed to an (accepting) run since the second input symbol is $\{b\}$. The trace $(\{a,b\}\varnothing\{a,b\})^\omega$ admits the accepting run

Finally, the trace \varnothing^ω admits the accepting run

- 4 1. False.
 - 2. False.
 - 3. True.
 - 4. False.
 - 5. False.
 - 6. False.
 - 7. True.
 - 8. True.
 - 9. False.
 - 10. True.