

	Automata and Logic		WS 2023/2024	LVA 703302
	2nd EXAM			February 23, 2024
			exam consists of five exercises. The available points for e are written in the margin. <i>Explain your answers!</i>	ach
$\langle 10 angle$	1		nabet $\Sigma = \{a, b\}$. Give a set $A \subseteq \Sigma^*$ and a homomorphic are regular but A is not.	sm $h: \Sigma^* \to \Sigma^*$ such
$\langle 15 angle$	2	Construct an AFA with less than 100 states for the set $\{x \in \{a\}^* \mid x = 2 \mod 105\}$. (Hint: consider the prime factorization of 105.)		
$\langle 15 angle$	3	Construct a WMSO formula for the set $\{x \in \{a, b\}^* \mid x \text{ is even}\}.$		
$\langle 10 angle$	4	Consider the Presburger arithmetic formula $\varphi = \exists x. \exists z. 2x - 3y + 2z = 1.$ (a) Which of the following strings belong to $L(\varphi)$?		
		i. 0011	ii. 1001 iii. 1000	
$\langle 15 angle \ \langle 15 angle$		(b) Construct a finite automaton that accepts $L(2x - 3y + 2z = 1)$. (c) Construct a finite automaton that accepts $L(\varphi)$.		
$\langle 20 \rangle$	5	tional.) Every con	er the following statements are true or false. (Providin rrect answer is worth 2 points. For every wrong answer 1 l number of points is non-negative.	
	1. The set $\{xx \mid x \in \{a, b\}^*\}$ is WMSO definable.		$x \in \{a, b\}^*\}$ is WMSO definable.	
	2. The regular expressions $\boldsymbol{\epsilon}^*$ and $\boldsymbol{\varnothing}^*$ are equivalent.		expressions $\boldsymbol{\epsilon}^*$ and $\boldsymbol{arnothing}^*$ are equivalent.	
	 The string a^ω belongs to the ω-iteration of {ε, aa}. The WMSO formula φ = ∀X. (∃x. X(x) → ∃y. ¬X(y)) is valid. The Hamming distance between the strings 010101 and 11011 is 5. The sets L₁₁ and L^f₁₁ coincide for the NBA 1 2 a Every regular set is accepted by an NFA having exactly one start state. 			
				,
				e.
		8. According to	Arden's Lemma, $X = aX + bY + c$ implies $X = (bY + c)$	$)^{*}a.$
		9. If \equiv is a Myh	nill–Nerode relation on Σ^* then $x \equiv y$ implies $ax \equiv ay$ for	all $a \in \Sigma$.
		10. The string		
		$\begin{pmatrix} 1\\0\\1 \end{pmatrix} \begin{pmatrix} 0\\0\\0 \end{pmatrix}$	$\left(\begin{array}{c}0\\1\\0\end{array}\right)\left(\begin{array}{c}0\\0\\0\end{array}\right)\left(\begin{array}{c}0\\1\\1\end{array}\right)$	
		is 2-admissab		