This exam consists of five exercises．The available points for each item are written in the margin．Explain your answers！
＜10〉 1 Consider the alphabet $\Sigma=\{a, b\}$ ．Give a set $A \subseteq \Sigma^{*}$ and a homomorphism $h: \Sigma^{*} \rightarrow \Sigma^{*}$ such $h(A)$ and $h^{-1}(A)$ are regular but A is not．
＜15〉 2 Construct an AFA with less than 100 states for the set $\left\{x \in\{a\}^{*}| | x \mid=2 \bmod 105\right\}$ ．（Hint： consider the prime factorization of 105．）

〈15〉 3］Construct a WMSO formula for the set $\left\{x \in\{a, b\}^{*}| | x \mid\right.$ is even $\}$ ．

4 Consider the Presburger arithmetic formula $\varphi=\exists x . \exists z \cdot 2 x-3 y+2 z=1$ ．
（a）Which of the following strings belong to $L(\varphi)$ ？
i． 0011
ii． 1001
iii． 1000
（b）Construct a finite automaton that accepts $L(2 x-3 y+2 z=1)$ ．
（c）Construct a finite automaton that accepts $L(\varphi)$ ．
＜20〉 5 Determine whether the following statements are true or false．（Providing explanation is op－ tional．）Every correct answer is worth 2 points．For every wrong answer 1 point is subtracted， provided the total number of points is non－negative．
1．The set $\left\{x x \mid x \in\{a, b\}^{*}\right\}$ is WMSO definable．
2．The regular expressions $\boldsymbol{\epsilon}^{*}$ and $\boldsymbol{\varnothing}^{*}$ are equivalent．
3．The string a^{ω} belongs to the ω－iteration of $\{\epsilon, a a\}$ ．
4．The WMSO formula $\varphi=\forall X .(\exists x \cdot X(x) \rightarrow \exists y . \neg X(y))$ is valid．
5．The Hamming distance between the strings 010101 and 11011 is 5 ．
6．The sets L_{11} and L_{11}^{f} coincide for the NBA

7．Every regular set is accepted by an NFA having exactly one start state．
8．According to Arden＇s Lemma，$X=a X+b Y+c$ implies $X=(b Y+c)^{*} a$ ．
9．If \equiv is a Myhill－Nerode relation on Σ^{*} then $x \equiv y$ implies $a x \equiv a y$ for all $a \in \Sigma$ ．
10．The string

$$
\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

is 2－admissable．

