universität innsbruck

Automata and Logic

WS 2023/2024

LVA 703302

February 23, 2024

2nd EXAM - SOLUTIONS

1 For instance, consider $A = \{a^n b^n \mid n \ge 0\}$ and h(a) = h(b) = a. We have $h(A) = \{a^{2n} \mid n \ge 0\}$ and $h^{-1}(A) = \{\epsilon\}$. Clearly, h(A) and $h^{-1}(A)$ are regular but A is not.

2 Let $\Sigma = \{a\}$ and let $M_i = (Q_i, \Sigma, \delta_i, s_i, \{s_i\})$ be the DFA that counts modulo i, so $L(M_i) = \{x \in \{a\}^* \mid |x| = 0 \mod i\}$

We use M_3 , M_5 and M_7 , and assume these three automata do not share states. The set

 $\{x \in \{a\}^* \mid |x| = 2 \mod 105\}$

is accepted by the AFA $M = (Q, \Sigma, \Delta, s, F)$ with $Q = \{s, t\} \uplus Q_3 \uplus Q_5 \uplus Q_7, F = \{s_3, s_5, s_7\}$ and

$$\Delta(q,a) = \begin{cases} t & \text{if } q = s \\ s_3 \wedge s_5 \wedge s_7 & \text{if } q = t \\ \delta_i(q,a) & \text{if } q \in Q_i \text{ for } i \in \{3,5,7\} \end{cases}$$

3 For instance,

$$\psi = \exists \ell. \neg P_a(\ell) \land \neg P_b(\ell) \land (\forall x. \neg P_a(x) \land \neg P_b(x) \to \ell \leqslant x) \land \\ \exists X. X(0) \land (\forall x. \forall y. y = x + 1 \land y \leqslant \ell \to (X(x) \leftrightarrow \neg X(y))) \land X(\ell)$$

- 4 (a) The string 0011 does not belong to $L(\varphi)$ since $(1100)_2 = 12$ and 2x 3y + 2z is even for all $x, z \in \mathbb{N}$. The string 1001 belongs to $L(\varphi)$ since $(1001)_2 = 9$ and 2x 3y + 2z = 1 for x = 14 and z = 0. The string 1000 belongs to $L(\varphi)$ since $(0001)_2 = 1$ and 2x 3y + 2z = 1 for x = 2 and z = 0.
 - (b) The construction from the lecture yields the DFA $M = (Q, \Sigma_3, \delta, s, F)$ with $Q = \{-3, -2, -1, 0, 1, 2, \bot\}$, $\Sigma = \{0, 1\}$, s = 1, $F = \{0\}$ and the following transition function δ :

	$\begin{pmatrix} 0\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
1	\perp	\perp	2	\perp	1	\perp	1	0
2	1	0	\perp	0	\perp	-1	\perp	\perp
0	0	-1	\perp	-1	\perp	-2	\perp	\perp
-1	\perp	\perp	1	\perp	0	\perp	0	-1
-2	-1	-2	\perp	-2	\perp	-3	\perp	\perp
-3	\perp	\perp	0	\perp	-1	\perp	-1	-2
\perp		\perp	\perp	\perp	\perp	\perp	\perp	\perp

(c) Applying the homomorphism Π_3 to the DFA M of part (b) yields the NFA $N = (Q, \Sigma_2, \Delta, S, F)$ with $S = \{1\}$ and Δ given in the following table:

	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1 \end{pmatrix}$
1	$\{\bot\}$	$\{\bot\}$	$\{1, 2\}$	$\{0,1\}$
2	$\{0,1\}$	$\{-1, 0\}$	$\{\bot\}$	$\{\bot\}$
0	$\{-1, 0\}$	$\{-2, -1\}$	$\{\bot\}$	$\{\bot\}$
-1	$\{\bot\}$	$\{\bot\}$	$\{0,1\}$	$\{-1, 0\}$
-2	$\{-2, -1\}$	$\{-3, -2\}$	$\{\bot\}$	$\{\bot\}$
-3	$\{\bot\}$	$\{\bot\}$	$\{-1, 0\}$	$\{-2, -1\}$
\perp	$\{\bot\}$	$\{\bot\}$	$\{\bot\}$	$\{\bot\}$

Applying the homomorphism Π_1 to the NFA N yields the NFA $N' = (Q, \Sigma, \Delta', S, F)$ with Δ' given in the following table:

	0	1
1	$\{\bot\}$	$\{0, 1, 2\}$
2	$\{-1, 0, 1\}$	$\{\bot\}$
0	$\{-2, -1, 0\}$	$\{\bot\}$
-1	$\{\bot\}$	$\{-1, 0, 1\}$
-2	$\set{-3,-2,-1}$	$\{\bot\}$
-3	$\{\bot\}$	$\{-2, -1, 0\}$
\perp	$\{\bot\}$	$\{\bot\}$

This latter NFA accepts all strings starting with a 1. These strings represent all odd numbers and every odd number satisfies φ .

5

False.
True.

3. True.

4. True.

5. False.

6. True.

- 7. True.
- 8. False.
- 9. False.
- 10. False.