1 For instance, consider $A=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}$ and $h(a)=h(b)=a$. We have $h(A)=\left\{a^{2 n} \mid n \geqslant 0\right\}$ and $h^{-1}(A)=\{\epsilon\}$. Clearly, $h(A)$ and $h^{-1}(A)$ are regular but $A$ is not.

2 Let $\Sigma=\{a\}$ and let $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, s_{i},\left\{s_{i}\right\}\right)$ be the DFA that counts modulo $i$, so

$$
L\left(M_{i}\right)=\left\{x \in\{a\}^{*}| | x \mid=0 \quad \bmod i\right\}
$$

We use $M_{3}, M_{5}$ and $M_{7}$, and assume these three automata do not share states. The set

$$
\left\{x \in\{a\}^{*}| | x \mid=2 \bmod 105\right\}
$$

is accepted by the AFA $M=(Q, \Sigma, \Delta, s, F)$ with $Q=\{s, t\} \uplus Q_{3} \uplus Q_{5} \uplus Q_{7}, F=\left\{s_{3}, s_{5}, s_{7}\right\}$ and

$$
\Delta(q, a)= \begin{cases}t & \text { if } q=s \\ s_{3} \wedge s_{5} \wedge s_{7} & \text { if } q=t \\ \delta_{i}(q, a) & \text { if } q \in Q_{i} \text { for } i \in\{3,5,7\}\end{cases}
$$

3 For instance,

$$
\begin{aligned}
\psi= & \exists \ell . \neg P_{a}(\ell) \wedge \neg P_{b}(\ell) \wedge\left(\forall x . \neg P_{a}(x) \wedge \neg P_{b}(x) \rightarrow \ell \leqslant x\right) \wedge \\
& \exists X . X(0) \wedge(\forall x . \forall y . y=x+1 \wedge y \leqslant \ell \rightarrow(X(x) \leftrightarrow \neg X(y))) \wedge X(\ell)
\end{aligned}
$$

4 (a) The string 0011 does not belong to $L(\varphi)$ since $(1100)_{2}=12$ and $2 x-3 y+2 z$ is even for all $x, z \in \mathbb{N}$. The string 1001 belongs to $L(\varphi)$ since $(1001)_{2}=9$ and $2 x-3 y+2 z=1$ for $x=14$ and $z=0$. The string 1000 belongs to $L(\varphi)$ since $(0001)_{2}=1$ and $2 x-3 y+2 z=1$ for $x=2$ and $z=0$.
(b) The construction from the lecture yields the DFA $M=\left(Q, \Sigma_{3}, \delta, s, F\right)$ with $Q=\{-3,-2,-1,0,1,2, \perp\}$, $\Sigma=\{0,1\}, s=1, F=\{0\}$ and the following transition function $\delta$ :

|  | $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ | $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ | $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ | $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ | $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ | $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ | $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ | $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\perp$ | $\perp$ | 2 | $\perp$ | 1 | $\perp$ | 1 | 0 |
| 2 | 1 | 0 | $\perp$ | 0 | $\perp$ | -1 | $\perp$ | $\perp$ |
| 0 | 0 | -1 | $\perp$ | -1 | $\perp$ | -2 | $\perp$ | $\perp$ |
| -1 | $\perp$ | $\perp$ | 1 | $\perp$ | 0 | $\perp$ | 0 | -1 |
| -2 | -1 | -2 | $\perp$ | -2 | $\perp$ | -3 | $\perp$ | $\perp$ |
| -3 | $\perp$ | $\perp$ | 0 | $\perp$ | -1 | $\perp$ | -1 | -2 |
| $\perp$ |

(c) Applying the homomorphism $\Pi_{3}$ to the DFA $M$ of part (b) yields the NFA $N=\left(Q, \Sigma_{2}, \Delta, S, F\right)$ with $S=\{1\}$ and $\Delta$ given in the following table:

|  | $\binom{0}{0}$ | $\binom{1}{0}$ | $\binom{0}{1}$ | $\binom{1}{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\{\perp\}$ | $\{\perp\}$ | $\{1,2\}$ | $\{0,1\}$ |
| 2 | $\{0,1\}$ | $\{-1,0\}$ | $\{\perp\}$ | $\{\perp\}$ |
| 0 | $\{-1,0\}$ | $\{-2,-1\}$ | $\{\perp\}$ | $\{\perp\}$ |
| -1 | $\{\perp\}$ | $\{\perp\}$ | $\{0,1\}$ | $\{-1,0\}$ |
| -2 | $\{-2,-1\}$ | $\{-3,-2\}$ | $\{\perp\}$ | $\{\perp\}$ |
| -3 | $\{\perp\}$ | $\{\perp\}$ | $\{-1,0\}$ | $\{-2,-1\}$ |
| $\perp$ | $\{\perp\}$ | $\{\perp\}$ | $\{\perp\}$ | $\{\perp\}$ |

Applying the homomorphism $\Pi_{1}$ to the NFA $N$ yields the NFA $N^{\prime}=\left(Q, \Sigma, \Delta^{\prime}, S, F\right)$ with $\Delta^{\prime}$ given in the following table:

|  | 0 | 1 |
| :---: | :---: | :---: |
| 1 | $\{\perp\}$ | $\{0,1,2\}$ |
| 2 | $\{-1,0,1\}$ | $\{\perp\}$ |
| 0 | $\{-2,-1,0\}$ | $\{\perp\}$ |
| -1 | $\{\perp\}$ | $\{-1,0,1\}$ |
| -2 | $\{-3,-2,-1\}$ | $\{\perp\}$ |
| -3 | $\{\perp\}$ | $\{-2,-1,0\}$ |
| $\perp$ | $\{\perp\}$ | $\{\perp\}$ |

This latter NFA accepts all strings starting with a 1 . These strings represent all odd numbers and every odd number satisfies $\varphi$.

1. False.
2. True
3. True.
4. True.
5. False.
6. True
7. True.
8. False.
9. False.
10. False
