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(a) A set A C N is diophantine if there exists a polynomial P(z,yy,...,y,) with integer
coefficients such that

r€A <<= Jy; - Jyp P(x,91,.-,Yn) =0

(b) We have {z? | z is odd} = {x | z — (2y + 1)*> = 0} and thus the polynomial P(z,y) =
x — 4y® — 4y — 1 shows that the set {z? | z is odd} is diophantine.

(c) Let A = {z|P(x,y1,...,yn) =0 for some yy,...,y, € N} be an arbitrary diophan-
tine set and consider the partial recursive function

o(x) = (ny) (Px, ()1, (y)n)* =0)

Since A is the domain of ¢, A is recursively enumerable.

(a) Given a combinator A for addition, we can take double = () (Azxz) = SA| because
SAln — An(In) — An(In) — Ann =" n4+n=2n

There are many combinators that represent addition, e.g. A = CI(SB).
(b) Let us write w for SIl. We have

S(Kw)(S(S(KS)K)(Kw))z

—  Kwz(S(S(KS)K) (Kw)x)

— w(S(S(KS)K) (Kw)x)

=1 S(S(KS)K) (Kw)z(S(S(KS)K) (Kw))
S(KS)Kz(Kwz)(S(S(KS)K) (Kw)z)
KSz(Kz)(Kwz)((S(S(KS)K)(Kw))z)
S(Kz)(Kwz)((S(S(KS)K) (Kw))z)
Kz(S(S(KS)K) (Kw)z) (Kwz)(S(S(KS)K)(Kw)x)
z(Kwx)(S(S(KS)K) (Kw)z)
z(S(Kw)(S(S(KS)K) (Kw))x)

(c¢) Decomposing SI(KI) gives the types

SI(KI): Sl: a« = 8 S:y—a—0 l:
Kl: a K:d =« I: 6

T 4Ll

with the following constraints

yoa—=pr(p—or—=1) = (pn—o) = p =T Y R 0y = 09
0= a & 03— T3 — 03 0 ~ 04— 04

Solving these constraints with the unification algorithm produces the mgu with £ +—
(04 = 04) > 1) = 7.



(a) We have {p — ¥, 0 — x, 0} Fn x:

1. p—=v assumption

2. assumption
3. Y modus ponens 1, 2
4. Y —x assumption
5. X modus ponens 4, 3

Hence Fy, (¢ — ) — (¥ — x) = ¢ — x by three applications of the deduction
theorem. It follows that (¢ — 1) — (¢ = x) — ¢ — x is intuitionistically valid.

(b) Consider the Kripke model C
v @\ /@ ;

From the table
o ¥ oAY (pAY) mp ) eVt (9 AY) = (CpV )

1| x X X v X X X X
2|V X X v x v v v
3 x v X v v X v v
we infer C,1 Iff =(p A¢) = (mp V =) and thus —(¢ A ) — (—¢ V =) is not

intuitionistically valid.
(c) First of all, {(p V) A=), b} Fy o

L. (V)N assumption

2. (pVY)A-Y = (p V) axiom 3

3. oV modus ponens 2, 1

4. (pVY)AN—Y — (p — 1) axiom 4

5. = modus ponens 4, 1

6. Y assumption

7. L modus ponens 5, 6

8. 1L =y axiom 9

9. ¢ modus ponens 8, 7
Hence (¢ V) A=t by 1 — ¢ (%) by the deduction theorem. Next we show (¢ V) A
Y o

L. (V)N assumption

2. VY line 3 above

3. = (%)

4 o= theorem

5. (p—= @)= W —=¢9) > eV — o  axiom 8

6. (W—=9)—2>pVh—ep modus ponens 5, 4

7. VY =g modus ponens 6, 3

8. ¢ modus ponens 7, 2

Hence Fy, (V) A=) — ¢ by the deduction theorem. It follows that (¢Vi)A—1Y — ¢
is intuitionistically valid.

(a) Let A be a non-trivial index set. So there exist numbers d € A and e ¢ A. For a proof
by contradiction, suppose A is recursive. Hence the function

e ifxeA
f(x):{d ifr¢ A



is recursive. The fixed point theorem yields a number a such that ¢, ~ ¢z, We
distinguish two cases.

i. If a € A then f(a) € A because A is an index set but f(a) = ¢ ¢ A.
ii. If a ¢ A then f(a) ¢ A because A is an index set but f(a) =d € A.
In both cases we have a contradiction. Hence A is not recursive.
(b) We distinguish five cases for ¢t — w.

i. Suppose t =1ty -ty =u. FromI'+-t:7weinferF1:0 — 7and ' F ¢; : 0.
Hence 0 = 7 and thus I' - w : 7.

ii. Suppose t = Ktytg — t; = u. From I' =t : 7 we infer I' - K¢; : ¢ — 7 and
' -ty : 0. The former entails FK: p — o — 7 and I' - ¢; : p. Hence p = 7 and
thusI'Fw: 7.

iii. Suppose t = Stytats — tit3(tats) = u. From 't : 7 we infer ' - Styty 1 0 — 7
and I' - t3 : 0. The former entails I' - Sty : p — 0 — 7 and ' - t5 : p. Further,
FS:y—p—ooc—-7and '+t :p. Fromk+-S: u — p — 0 — 7 we obtain
p=0c—prand p =0 — p — 7. Hence I' - t1t3 : py — 7 and ' I 513 : p; and
therefore I' - w : 7.

iv. Suppose t = t1ty — uito = u with t1 - u;. From I't: 7 weinfer 'H¢; : 0 > 7
and I' Fty : 0. We obtain I' - u; : ¢ — 7 from the induction hypothesis. Hence
I'Fu:rT.

v. Suppose t = t1ty —> tius = u with to — uy. From 't : 7 weinfer T'H ¢, : 0 — 7
and I' -ty : 0. We obtain I' - us : ¢ from the induction hypothesis. Hence
Fuw:r.

(c) We use induction on x. If z = 0 then y = 1. Clearly, x = Fy and y = F; are
consecutive Fibonacci numbers. Suppose z > 0. We have yx + 2> > y and thus
1 =1y%— (yr + 2?) < y* —y. Hence y > 2. Consequently,

(r+1)P=2+2r+1< 2 +yz+1=197°
and thus y > x. Hence
v =yr+2*+1<yr+ 2+ =yr+ (v + Da <yr +yr = 2yx

and therefore y < 2x. Now let a = 2x —y and b = y — . We have 0 < a < x and
0 < b. Moreover

B —ba—a’=(y—z—(y—2)2c—y) -2 -y’ =y’ —yr —2° =1
Since a < x we can apply the induction hypothesis. This yields a = F; and b = Fj 4

for some ¢ > 0. Hence x =a+b=F; ;o and y =b+x = Fj;3.

The second and third statements are true, the others are false.



