1 (a) A set $A \subseteq \mathbb{N}$ is diophantine if there exists a polynomial $P\left(x, y_{1}, \ldots, y_{n}\right)$ with integer coefficients such that

$$
x \in A \Longleftrightarrow \exists y_{1} \cdots \exists y_{n} P\left(x, y_{1}, \ldots, y_{n}\right)=0
$$

(b) We have $\left\{x^{2} \mid x\right.$ is odd $\}=\left\{x \mid x-(2 y+1)^{2}=0\right\}$ and thus the polynomial $P(x, y)=$ $x-4 y^{2}-4 y-1$ shows that the set $\left\{x^{2} \mid x\right.$ is odd $\}$ is diophantine.
(c) Let $A=\left\{x \mid P\left(x, y_{1}, \ldots, y_{n}\right)=0\right.$ for some $\left.y_{1}, \ldots, y_{n} \in \mathbb{N}\right\}$ be an arbitrary diophantine set and consider the partial recursive function

$$
\varphi(x)=(\mu y)\left(P\left(x,(y)_{1}, \ldots,(y)_{n}\right)^{2}=0\right)
$$

Since A is the domain of φ, A is recursively enumerable.

2 (a) Given a combinator A for addition, we can take double $=\langle x\rangle(\mathrm{A} x x)=\mathrm{SA}$ I because

$$
\mathrm{SAI} \underline{n} \rightarrow \mathrm{~A} \underline{n}(\underline{\mathrm{I}} \underline{n}) \rightarrow \mathrm{A} \underline{n}(\underline{\mathrm{I}} \underline{n}) \rightarrow \mathrm{A} \underline{n} \underline{n} \rightarrow^{*} \underline{n+n}=\underline{2 n}
$$

There are many combinators that represent addition, e.g. $\mathrm{A}=\mathrm{CI}(\mathrm{SB})$.
(b) Let us write ω for SII. We have

$$
\begin{aligned}
\mathrm{S}(\mathrm{~K} \omega) & (\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega)) x \\
& \rightarrow \mathrm{~K} \omega x(\mathrm{~S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \rightarrow \omega(\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \rightarrow+\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x(\mathrm{~S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \rightarrow \mathrm{S}(\mathrm{KS}) \mathrm{K} x(\mathrm{~K} \omega x)(\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \rightarrow \mathrm{KS} x(\mathrm{~K} x)(\mathrm{K} \omega x)((\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega)) x) \\
& \rightarrow \mathrm{S}(\mathrm{~K} x)(\mathrm{K} \omega x)((\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega)) x) \\
& \rightarrow \mathrm{K} x(\mathrm{~S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x)(\mathrm{K} \omega x)(\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \rightarrow x(\mathrm{~K} \omega x)(\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega) x) \\
& \leftarrow x(\mathrm{~S}(\mathrm{~K} \omega)(\mathrm{S}(\mathrm{~S}(\mathrm{KS}) \mathrm{K})(\mathrm{K} \omega)) x)
\end{aligned}
$$

(c) Decomposing $\mathrm{SI}(\mathrm{KI})$ gives the types

$$
\begin{array}{llll}
\text { SI(KI }): \beta & \text { SI: } \alpha \rightarrow \beta & \text { S: } \gamma \rightarrow \alpha \rightarrow \beta & \mathrm{I}: \gamma \\
& \mathrm{KI}: \alpha & \mathrm{K}: \delta \rightarrow \alpha & \mathrm{I}: \delta
\end{array}
$$

with the following constraints

$$
\begin{aligned}
& \gamma \rightarrow \alpha \rightarrow \beta \approx\left(\rho_{1} \rightarrow \sigma_{1} \rightarrow \tau_{1}\right) \rightarrow\left(\rho_{1} \rightarrow \sigma_{1}\right) \rightarrow \rho_{1} \rightarrow \tau_{1} \quad \gamma \approx \sigma_{2} \rightarrow \sigma_{2} \\
& \delta \rightarrow \alpha \approx \sigma_{3} \rightarrow \tau_{3} \rightarrow \sigma_{3} \quad \delta \approx \sigma_{4} \rightarrow \sigma_{4}
\end{aligned}
$$

Solving these constraints with the unification algorithm produces the mgu with $\beta \mapsto$ $\left(\left(\sigma_{4} \rightarrow \sigma_{4}\right) \rightarrow \tau_{1}\right) \rightarrow \tau_{1}$.

3 (a) We have $\{\varphi \rightarrow \psi, \psi \rightarrow \chi, \varphi\} \vdash_{\mathrm{h}} \chi$:

1. $\varphi \rightarrow \psi \quad$ assumption
2. $\varphi \quad$ assumption
3. $\psi \quad$ modus ponens 1,2
4. $\psi \rightarrow \chi$ assumption
5. $\chi \quad$ modus ponens 4,3

Hence $\vdash_{\mathrm{h}}(\varphi \rightarrow \psi) \rightarrow(\psi \rightarrow \chi) \rightarrow \varphi \rightarrow \chi$ by three applications of the deduction theorem. It follows that $(\varphi \rightarrow \psi) \rightarrow(\psi \rightarrow \chi) \rightarrow \varphi \rightarrow \chi$ is intuitionistically valid.
(b) Consider the Kripke model \mathcal{C}

From the table

	φ	ψ	$\varphi \wedge \psi$	$\neg(\varphi \wedge \psi)$	$\neg \varphi$	$\neg \psi$	$\neg \varphi \vee \neg \psi$	$\neg(\varphi \wedge \psi) \rightarrow(\neg \varphi \vee \neg \psi)$
1	\times	\times	\times	\checkmark	\times	\times	\times	\times
2	\checkmark	\times	\times	\checkmark	\times	\checkmark	\checkmark	\checkmark
3	\times	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark

we infer $\mathcal{C}, 1$ サ $\neg(\varphi \wedge \psi) \rightarrow(\neg \varphi \vee \neg \psi)$ and thus $\neg(\varphi \wedge \psi) \rightarrow(\neg \varphi \vee \neg \psi)$ is not intuitionistically valid.
(c) First of all, $\{(\varphi \vee \psi) \wedge \neg \psi, \psi\} \vdash_{\mathrm{h}} \varphi$:

1. $(\varphi \vee \psi) \wedge \neg \psi \quad$ assumption
2. $(\varphi \vee \psi) \wedge \neg \psi \rightarrow(\varphi \vee \psi) \quad$ axiom 3
3. $\varphi \vee \psi \quad$ modus ponens 2,1
4. $(\varphi \vee \psi) \wedge \neg \psi \rightarrow(\psi \rightarrow \perp) \quad$ axiom 4
5. $\neg \psi$
modus ponens 4,1
6. ψ assumption
7. \perp modus ponens 5, 6
8. $\perp \rightarrow \varphi \quad$ axiom 9
9. $\varphi \quad$ modus ponens 8,7

Hence $(\varphi \vee \psi) \wedge \neg \psi \vdash_{\mathrm{h}} \psi \rightarrow \varphi(\star)$ by the deduction theorem. Next we show $(\varphi \vee \psi) \wedge$ $\neg \psi \vdash_{\mathrm{h}} \varphi$:

1. $(\varphi \vee \psi) \wedge \neg \psi$
2. $\varphi \vee \psi$
3. $\psi \rightarrow \varphi$
4. $\varphi \rightarrow \varphi$
5. $(\varphi \rightarrow \varphi) \rightarrow(\psi \rightarrow \varphi) \rightarrow \varphi \vee \psi \rightarrow \varphi$
6. $(\psi \rightarrow \varphi) \rightarrow \varphi \vee \psi \rightarrow \varphi$
7. $\varphi \vee \psi \rightarrow \varphi$
8. φ
assumption
line 3 above
(*)
theorem
axiom 8
modus ponens 5, 4
modus ponens 6,3
modus ponens 7,2

Hence $\vdash_{\mathrm{h}}(\varphi \vee \psi) \wedge \neg \psi \rightarrow \varphi$ by the deduction theorem. It follows that $(\varphi \vee \psi) \wedge \neg \psi \rightarrow \varphi$ is intuitionistically valid.

4 (a) Let A be a non-trivial index set. So there exist numbers $d \in A$ and $e \notin A$. For a proof by contradiction, suppose A is recursive. Hence the function

$$
f(x)= \begin{cases}e & \text { if } x \in A \\ d & \text { if } x \notin A\end{cases}
$$

is recursive. The fixed point theorem yields a number a such that $\varphi_{a} \simeq \varphi_{f a}$. We distinguish two cases.
i. If $a \in A$ then $f(a) \in A$ because A is an index set but $f(a)=e \notin A$.
ii. If $a \notin A$ then $f(a) \notin A$ because A is an index set but $f(a)=d \in A$.

In both cases we have a contradiction. Hence A is not recursive.
(b) We distinguish five cases for $t \rightarrow u$.
i. Suppose $t=\mathrm{I} t_{1} \rightarrow t_{1}=u$. From $\Gamma \vdash t: \tau$ we infer $\vdash \mathrm{I}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{1}: \sigma$. Hence $\sigma=\tau$ and thus $\Gamma \vdash u: \tau$.
ii. Suppose $t=\mathrm{K} t_{1} t_{2} \rightarrow t_{1}=u$. From $\Gamma \vdash t: \tau$ we infer $\Gamma \vdash \mathrm{K} t_{1}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \sigma$. The former entails $\vdash \mathrm{K}: \rho \rightarrow \sigma \rightarrow \tau$ and $\Gamma \vdash t_{1}: \rho$. Hence $\rho=\tau$ and thus $\Gamma \vdash u: \tau$.
iii. Suppose $t=\mathrm{S} t_{1} t_{2} t_{3} \rightarrow t_{1} t_{3}\left(t_{2} t_{3}\right)=u$. From $\Gamma \vdash t: \tau$ we infer $\Gamma \vdash \mathrm{S} t_{1} t_{2}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{3}: \sigma$. The former entails $\Gamma \vdash \mathrm{S} t_{1}: \rho \rightarrow \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \rho$. Further, $\vdash \mathrm{S}: \mu \rightarrow \rho \rightarrow \sigma \rightarrow \tau$ and $\Gamma \vdash t_{1}: \mu$. From $\vdash \mathrm{S}: \mu \rightarrow \rho \rightarrow \sigma \rightarrow \tau$ we obtain $\rho=\sigma \rightarrow \rho_{1}$ and $\mu=\sigma \rightarrow \rho_{1} \rightarrow \tau$. Hence $\Gamma \vdash t_{1} t_{3}: \rho_{1} \rightarrow \tau$ and $\Gamma \vdash t_{2} t_{3}: \rho_{1}$ and therefore $\Gamma \vdash u: \tau$.
iv. Suppose $t=t_{1} t_{2} \rightarrow u_{1} t_{2}=u$ with $t_{1} \rightarrow u_{1}$. From $\Gamma \vdash t: \tau$ we infer $\Gamma \vdash t_{1}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \sigma$. We obtain $\Gamma \vdash u_{1}: \sigma \rightarrow \tau$ from the induction hypothesis. Hence $\Gamma \vdash u: \tau$.
v. Suppose $t=t_{1} t_{2} \rightarrow t_{1} u_{2}=u$ with $t_{2} \rightarrow u_{2}$. From $\Gamma \vdash t: \tau$ we infer $\Gamma \vdash t_{1}: \sigma \rightarrow \tau$ and $\Gamma \vdash t_{2}: \sigma$. We obtain $\Gamma \vdash u_{2}: \sigma$ from the induction hypothesis. Hence $\Gamma \vdash u: \tau$.
(c) We use induction on x. If $x=0$ then $y=1$. Clearly, $x=F_{0}$ and $y=F_{1}$ are consecutive Fibonacci numbers. Suppose $x>0$. We have $y x+x^{2}>y$ and thus $1=y^{2}-\left(y x+x^{2}\right)<y^{2}-y$. Hence $y \geqslant 2$. Consequently,

$$
(x+1)^{2}=x^{2}+2 x+1 \leqslant x^{2}+y x+1=y^{2}
$$

and thus $y>x$. Hence

$$
y^{2}=y x+x^{2}+1 \leqslant y x+x^{2}+x=y x+(x+1) x \leqslant y x+y x=2 y x
$$

and therefore $y \leqslant 2 x$. Now let $a=2 x-y$ and $b=y-x$. We have $0 \leqslant a<x$ and $0<b$. Moreover

$$
b^{2}-b a-a^{2}=(y-x)^{2}-(y-x)(2 x-y)-(2 x-y)^{2}=y^{2}-y x-x^{2}=1
$$

Since $a<x$ we can apply the induction hypothesis. This yields $a=F_{i}$ and $b=F_{i+1}$ for some $i \geqslant 0$. Hence $x=a+b=F_{i+2}$ and $y=b+x=F_{i+3}$.

5 The second and third statements are true, the others are false.

