universität
 innsbruck

LVA 703317

This test consists of five exercises．The available points for each item are written in the margin．Explain your answers to the first four exercises！
（a）Recall the definition of a diophantine set of natural numbers．
（b）Prove that the set $\left\{x^{2} \mid x\right.$ is odd $\}$ is diophantine．
（c）Prove that diophantine sets are recursively enumerable．

2 This exercise is about combinatory logic．
（a）Construct a combinator double such that double $\underline{n} \rightarrow^{*} \underline{2 n}$ for all $n \geqslant 0$ ．
（b）Prove that $\mathrm{S}(\mathrm{K}(\mathrm{SII}))(\mathrm{S}(\mathrm{S}(\mathrm{KS}) \mathrm{K})(\mathrm{K}(\mathrm{SII}))$ ）is a fixed point combinator．
（c）Compute the principle type of $\mathrm{SI}(\mathrm{KI})$ ．

3 Which of the following propositional formulas are intuitionistically valid？For those that are，provide a Hilbert－style proof．For those that are not，construct a Kripke model that shows this．
（a）$(\varphi \rightarrow \psi) \rightarrow(\psi \rightarrow \chi) \rightarrow \varphi \rightarrow \chi$
（b）$\neg(\varphi \wedge \psi) \rightarrow(\neg \varphi \vee \neg \psi)$
（c）$((\varphi \vee \psi) \wedge \neg \psi) \rightarrow \varphi$

〈15〉 4 Prove one of the following statements．
（a）Non－trivial index sets are not recursive．
（b）In typed combinatory logic，if $\Gamma \vdash t: \tau$ and $t \rightarrow u$ then $\Gamma \vdash u: \tau$ ．
（c）If $y^{2}-y x-x^{2}=1$ for $x, y \geqslant 0$ then x and y are consecutive Fibonacci numbers．
$\langle 10\rangle 5$ Determine whether the following statements are true or false．Every correct answer is worth 2 points．For every wrong answer 1 point is subtracted，provided the total number of points is non－negative．

1．$\lambda x . y(\lambda y . x y z) \equiv_{\alpha} \lambda y . x(\lambda x . y x z)$
2．The function $\mathrm{fib}(\mathrm{fib}(x))$ belongs to E_{4} ．
3．Every typable CL－term is strongly computable．
4．The unary function $\varphi_{\langle 5,\langle 3,\langle 1\rangle,\langle 5,\langle 2,1,1\rangle\rangle\rangle\rangle}$ is LOOP computable．
5．The partial recursive function $\psi(x)=\varphi_{x}(x)+1$ can be extended to a total recursive function．

