Exercises

$\langle 3\rangle \quad$ 1. Prove that the following functions are primitive recursive:
(a) $f(x)= \begin{cases}x \div 2 & \text { if } x \text { is even } \\ 3 x+1 & \text { if } x \text { is odd }\end{cases}$
(b) The function $g(x)$ that returns the natural number y such that $y \leqslant \sqrt{x}<y+1$.
(c) $\operatorname{gcd}(x, y)$
<2〉 2. Consider the function $\pi^{\prime}(x, y)=\left((x+y)^{2}+3 x+y\right) \div 2$.
(a) Prove that π^{\prime} is a bijection between \mathbb{N}^{2} and \mathbb{N}
(b) Define corresponding primitive recursive extraction functions π_{1}^{\prime} and π_{2}^{\prime}.
<2 \quad 3. Let c be an arbitrary natural number.
(a) Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be a primitive recursive function with $n>0$. Prove that the function $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
g\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}, c\right)
$$

is primitive recursive.
(b) Let $h: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be primitive recursive. Prove that the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by the recursive equations

$$
\begin{aligned}
f(0) & =c \\
f(x+1) & =h(f(x), x)
\end{aligned}
$$

is primitive recursive.

