

Computability Theory

Aart Middeldorp

Initial Remarks

- Computability Theory is part of WM 9 in master program Computer Science

Initial Remarks

- Computability Theory is part of WM 9 in master program Computer Science
- WM 9 is part of Logic and Learning specialization

Initial Remarks

- Computability Theory is part of WM 9 in master program Computer Science
- WM 9 is part of Logic and Learning specialization
- other courses in Logic and Learning specialization:
- Machine Learning for Theorem Proving

LVA 703819

- Program and Resource Analysis

LVA 703316

Outline

1. Organisation
2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
6. Summary

- LVA 703317
- LVA 703317
- VU 3 - 5 ECTS
- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- http://cl-informatik.uibk.ac.at/teaching/ws23/ct

Organisation

- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- http://cl-informatik.uibk.ac.at/teaching/ws23/ct
- OLAT

Organisation

- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- http://cl-informatik.uibk.ac.at/teaching/ws23/ct
- OLAT
- consultation hours: Thursday 9:30-11:00 3M07 and online

Organisation

- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- http://cl-informatik.uibk.ac.at/teaching/ws23/ct
- OLAT
- consultation hours: Thursday 9:30-11:00 3M07 and online

Schedule

lecture 1	October 2	lecture 6	November 6	lecture 11	December 11
lecture 2	October 9	lecture 7	November 13	lecture 12	January 8
lecture 3	October 16	lecture 8	November 20	lecture 13	January 15
lecture 4	October 23	lecture 9	November 27	lecture 14	January 22
lecture 5	October 30	lecture 10	December 4	lecture 15	January 29

Organisation

- LVA 703317
- VU 3 - 5 ECTS
- 15:15-18:00 in HS 10
- http://cl-informatik.uibk.ac.at/teaching/ws23/ct
- OLAT
- consultation hours: Thursday 9:30-11:00 3M07 and online

Schedule

lecture 1	October 2	lecture 6	November 6	lecture 11	December 11
lecture 2	October 9	lecture 7	November 13	lecture 12	January 8
lecture 3	October 16	lecture 8	November 20	lecture 13	January 15
lecture 4	October 23	lecture 9	November 27	lecture 14	January 22
lecture 5	October 30	lecture 10	December 4	lecture 15	January 29 (test)

Grading

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

Grading

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

E : points for solved exercises (at most 91)

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)

$$
\text { grade }=\text { score } \in(-50) \rightarrow 5 \quad[50-63) \rightarrow 4 \quad[63-75) \rightarrow 3 \quad[75-88) \rightarrow 2 \quad[88-) \rightarrow 1
$$

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)

$$
\text { grade }=\text { score } \in(-50) \rightarrow 5 \quad[50-63) \rightarrow 4 \quad[63-75) \rightarrow 3 \quad[75-88) \rightarrow 2 \quad[88-) \rightarrow 1
$$

- solved exercises must be marked and solutions (PDF format) must be uploaded in OLAT before 10 am on Monday

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)
grade $=$ score $\in(-50) \rightarrow 5 \quad[50-63) \rightarrow 4 \quad[63-75) \rightarrow 3 \quad[75-88) \rightarrow 2 \quad[88-) \rightarrow 1$

- solved exercises must be marked and solutions (PDF format) must be uploaded in OLAT before 10 am on Monday
- presentations are optional

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)
grade $=$ score $\in(-50) \rightarrow 5 \quad[50-63) \rightarrow 4 \quad[63-75) \rightarrow 3 \quad[75-88) \rightarrow 2 \quad[88-) \rightarrow 1$

- solved exercises must be marked and solutions (PDF format) must be uploaded in OLAT before 10 am on Monday
- presentations are optional
- (optional) test on January 29

Grading

score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$
E : points for solved exercises (at most 91)
P : points for presentation of solutions (at most 9)
T : points for test (at most 100)
B : points for bonus exercises (at most 15)
grade $=$ score $\in(-50) \rightarrow 5 \quad[50-63) \rightarrow 4 \quad[63-75) \rightarrow 3 \quad[75-88) \rightarrow 2 \quad[88-) \rightarrow 1$

- solved exercises must be marked and solutions (PDF format) must be uploaded in OLAT before 10 am on Monday
- presentations are optional
- (optional) test on January 29
evaluation SS 2022

Outline

1. Organisation

2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
6. Summary

- Turing machines

Theorem

- lambda calculus
- Turing machines

Theorem

- combinatory logic
- lambda calculus
- Turing machines
- term rewrite systems

Theorem

- combinatory logic
- lambda calculus
- Turing machines
- C/Haskell/Java / Python / . . . programs
- term rewrite systems

Theorem

- combinatory logic
- enumeration machines
- interaction nets
- Iambda calculus
- Turing machines
- C/Haskell/Java/Python / ... programs
- recursive functions
- term rewrite systems
- two-counter automata
- quantum computers
capture the same notion of computation

Theorem

- combinatory logic
- enumeration machines
- interaction nets
- Iambda calculus
- Turing machines
- C/Haskell/Java / Python / ... programs
- recursive functions
- term rewrite systems
- two-counter automata
- quantum computers
capture the same notion of computation

Literature (Recursive Function Theory)

- Nigel Cutland

Computability: An Introduction to Recursive Function Theory
Cambridge University Press, 1980

- Richard Epstein and Walter Carnielli

Computability: Computable Functions, Logic, and the Foundations of Mathematics (3rd edition)
Advanced Reasoning Forum, 2008

- Piergiorgio Odifreddi

Classical Recursion Theory (2nd edition)
North Holland, 1992

- Hartley Rogers Jr.

Theory of Recursive Functions and Effective Computability MIT Press, 1987

- Rózsa Péter

Rekursive Funktionen in der Komputer-Theorie
Akadémiai Kiadó, 1976

Literature (Combinatory Logic and Lambda Calculus)

- Katalin Bimbó

Combinatory Logic: Pure, Applied and Typed
CRC Press, 2011

- Henk Barendregt

The Lambda Calculus, Its Syntax and Semantics
North Holland, 1984

- Herman Geuvers and Rob Nederpelt

Type Theory and Formal Proof
Cambridge University Press, 2014

- Chris Hankin

An Introduction to Lambda Calculi for Computer Scientists
King's College Publications, 2000

- J. Roger Hindley and Jonathan P. Seldin

Lambda-Calculus and Combinators, an Introduction
Cambridge University Press, 2008

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

α-equivalence, abstraction, arithmetization, β-reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η-reduction, fixed point theorem, intuitionistic propositional logic, λ-definability, normalization theorem, termination, typing, undecidability, Z property, ...

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

α-equivalence, abstraction, arithmetization, β-reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η-reduction, fixed point theorem, intuitionistic propositional logic, λ-definability, normalization theorem, termination, typing, undecidability, Z property, ...

Outline

1. Organisation
2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
6. Summary

Examples

- which function is computable ?

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of exactly } x \text { fives } \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of at least } x \text { fives } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Examples

- which function is computable ?

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of exactly } x \text { fives } \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of at least } x \text { fives } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- which are (total) functions ?

$$
f(x)=f(x)+1
$$

Examples

- which function is computable ?

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of exactly } x \text { fives } \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of at least } x \text { fives } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- which are (total) functions ?

$$
\begin{aligned}
& f(x)=f(x)+1 \\
& g(x)= \begin{cases}0 & \text { if } x=0 \\
g(g(x-1)) & \text { if } x>0\end{cases}
\end{aligned}
$$

Examples

- which function is computable ?

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of exactly } x \text { fives } \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of at least } x \text { fives } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- which are (total) functions ?

$$
\begin{aligned}
& f(x)=f(x)+1 \\
& g(x)= \begin{cases}0 & \text { if } x=0 \\
g(g(x-1)) & \text { if } x>0\end{cases} \\
& h(x)=0 \times f(x)
\end{aligned}
$$

Examples

- which function is computable ?

$$
\begin{aligned}
& f(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of exactly } x \text { fives } \\
0 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}1 & \text { if decimal expansion of } \pi \text { contains consecutive run of at least } x \text { fives } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- which are (total) functions ?

$$
\begin{aligned}
& f(x)=f(x)+1 \\
& g(x)=\left\{\begin{array}{l}
0 \\
g(g(x
\end{array}\right. \\
& h(x)=0 \times f(x)
\end{aligned}
$$

$$
g(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 \\
g(g(x-1)) & \text { if } x>0
\end{array} \quad i(x)= \begin{cases}1 & \text { if } x=0 \text { or } x=1 \\
i(x / 2) & \text { if } x>1 \text { is even } \\
i(3 x+1) & \text { if } x>1 \text { is odd }\end{cases}\right.
$$

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$

Definition

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions

- zero

$$
z(x)=0
$$

Definition

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions

- zero

$$
z(x)=0
$$

- successor $\mathrm{s}(x)=x+1$

Definition

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions

- zero

$$
z(x)=0
$$

- successor $\mathrm{s}(x)=x+1$
- projection $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad$ for all $n \geqslant 1$ and $1 \leqslant i \leqslant n$

Definition

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions

- zero $\quad z(x)=0$
- successor $\mathrm{s}(x)=x+1$
- projection $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad$ for all $n \geqslant 1$ and $1 \leqslant i \leqslant n$
and is closed under composition
- $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right) \in \mathrm{PR} \quad$ for all $g: \mathbb{N}^{m} \rightarrow \mathbb{N} \in \mathrm{PR}$ and $h_{1}, \ldots, h_{m}: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR}$

Definition

class PR of primitive recursive functions is smallest class of total functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions

- zero $\quad z(x)=0$
- successor $\mathrm{s}(x)=x+1$
- projection $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \quad$ for all $n \geqslant 1$ and $1 \leqslant i \leqslant n$
and is closed under composition
- $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right) \in \mathrm{PR} \quad$ for all $g: \mathbb{N}^{m} \rightarrow \mathbb{N} \in \mathrm{PR}$ and $h_{1}, \ldots, h_{m}: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR}$ and primitive recursion
- $f(x, \vec{y}): \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(f(x, \vec{y}), x, \vec{y})
\end{aligned}
$$

belongs to PR for all $g: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR}$ and $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \in \mathrm{PR}$

Examples

- addition

$$
\begin{aligned}
x+y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

Examples

- addition

$$
\begin{aligned}
x+y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=\pi_{1}^{1}(x)$ and $h(x, y, z)=s\left(\pi_{1}^{3}(x, y, z)\right)$

Examples

- addition

$$
\begin{aligned}
x+y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=\pi_{1}^{1}(x)$ and $h(x, y, z)=\mathrm{s}\left(\pi_{1}^{3}(x, y, z)\right)$

- multiplication

$$
x \times y=f(x, y) \in \mathrm{PR}
$$

$$
\begin{aligned}
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

Examples

- addition

$$
\begin{aligned}
x+y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=\pi_{1}^{1}(x)$ and $h(x, y, z)=\mathrm{s}\left(\pi_{1}^{3}(x, y, z)\right)$

- multiplication

$$
\begin{aligned}
x \times y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=z(x)$ and $h(x, y, z)=\pi_{1}^{3}(x, y, z)+\pi_{3}^{3}(x, y, z)$

Examples

- addition

$$
\begin{aligned}
x+y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=\pi_{1}^{1}(x)$ and $h(x, y, z)=\mathrm{s}\left(\pi_{1}^{3}(x, y, z)\right)$

- multiplication

$$
\begin{aligned}
x \times y=f(x, y) & \in \mathrm{PR} \\
f(0, y) & =g(y) \\
f(x+1, y) & =h(f(x, y), x, y)
\end{aligned}
$$

with $g(x)=z(x)$ and $h(x, y, z)=\pi_{1}^{3}(x, y, z)+\pi_{3}^{3}(x, y, z)$

- exponentiation $\quad x^{y}=f(y, x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0, y) & =\mathrm{s}(\mathrm{z}(y)) \\
f(x+1, y) & =\pi_{1}^{3}(f(x, y), x, y) \times \pi_{3}^{3}(f(x, y), x, y)
\end{aligned}
$$

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Proof

- $y_{i}=x_{j} \quad \Longrightarrow \quad y_{i}=\pi_{j}^{m}\left(x_{1}, \ldots, x_{m}\right)$

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Proof

- $y_{i}=x_{j} \quad \Longrightarrow \quad y_{i}=\pi_{j}^{m}\left(x_{1}, \ldots, x_{m}\right)$
- hence g can be defined by composing f with projection functions

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Proof

- $y_{i}=x_{j} \quad \Longrightarrow \quad y_{i}=\pi_{j}^{m}\left(x_{1}, \ldots, x_{m}\right)$
- hence g can be defined by composing f with projection functions

Example

- cut-off subtraction (monus)

$$
x \dot{-} y= \begin{cases}x-y & \text { if } x \geqslant y \\ 0 & \text { otherwise }\end{cases}
$$

is primitive recursive

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Proof

- $y_{i}=x_{j} \quad \Longrightarrow \quad y_{i}=\pi_{j}^{m}\left(x_{1}, \ldots, x_{m}\right)$
- hence g can be defined by composing f with projection functions

Example

- cut-off subtraction (monus)

$$
x \dot{-} y=\left\{\begin{array}{llc}
x-y & \text { if } x \geqslant y & x \dot{-0}=x \\
0 & \text { otherwise } & x \dot{-}(y+1)=\mathrm{p}(x \dot{-})
\end{array}\right.
$$

is primitive recursive

Lemma

$$
g\left(x_{1}, \ldots, x_{m}\right)=f\left(y_{1}, \ldots, y_{n}\right) \in \mathrm{PR} \quad \text { if } f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{PR} \text { and } y_{i} \in\left\{x_{1}, \ldots, x_{m}\right\} \text { for all } 1 \leqslant i \leqslant n
$$

Proof

- $y_{i}=x_{j} \quad \Longrightarrow \quad y_{i}=\pi_{j}^{m}\left(x_{1}, \ldots, x_{m}\right)$
- hence g can be defined by composing f with projection functions

Example

- cut-off subtraction (monus)

$$
x \dot{\perp} y=\left\{\begin{array}{llr}
x-y & \text { if } x \geqslant y & x \dot{-}=x \\
0 & \text { otherwise } & x \dot{-}(y+1)=p(x \dot{-})
\end{array}\right.
$$

is primitive recursive

Examples

- predecessor $\quad \mathrm{p}(x)=f(x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0) & =0 \\
f(x+1) & =x=\pi_{2}^{2}(f(x), x)
\end{aligned}
$$

Examples

- predecessor $\quad \mathrm{p}(x)=f(x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0) & =0 \\
f(x+1) & =x=\pi_{2}^{2}(f(x), x)
\end{aligned}
$$

- factorial

$$
x!=f(x) \in \mathrm{PR}
$$

$$
\begin{aligned}
f(0) & =1 \\
f(x+1) & =s(x) \times f(x)
\end{aligned}
$$

Examples

- predecessor $\quad \mathrm{p}(x)=f(x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0) & =0 \\
f(x+1) & =x=\pi_{2}^{2}(f(x), x)
\end{aligned}
$$

- factorial

$$
\begin{aligned}
& x!=f(x) \in \mathrm{PR} \\
& \\
& f(0)=1 \\
& f(x+1)=\mathrm{s}(x) \times f(x)
\end{aligned}
$$

- summation

$$
\begin{aligned}
\sum_{i=1}^{x} i=f(x) \in \mathrm{PR} & \\
f(0) & =0 \\
f(x+1) & =\mathrm{s}(x)+f(x)
\end{aligned}
$$

Examples

- predecessor $\quad \mathrm{p}(x)=f(x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0) & =0 ? \\
f(x+1) & =x=\pi_{2}^{2}(f(x), x)
\end{aligned}
$$

- factorial

$$
\begin{aligned}
& x!=f(x) \in \mathrm{PR} \\
& \\
& \qquad \begin{aligned}
f(0) & =1 ? \\
f(x+1) & =s(x) \times f(x)
\end{aligned}
\end{aligned}
$$

- summation $\quad \sum_{i=1}^{x} i=f(x) \in \mathrm{PR}$

$$
\begin{aligned}
f(0) & =0 ? \\
f(x+1) & =\mathrm{s}(x)+f(x)
\end{aligned}
$$

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Lemma

PR is closed under iteration

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Lemma

PR is closed under iteration

Proof

- suppose $g: \mathbb{N} \rightarrow \mathbb{N} \in \mathrm{PR}$

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Lemma

PR is closed under iteration

Proof

- suppose $g: \mathbb{N} \rightarrow \mathbb{N} \in P R$
- $f(n, x)=g^{(n)}(x)$ can be defined by primitive recursion:

$$
\begin{aligned}
f(0, x) & =x \\
f(n+1, x) & =g(f(n, x))
\end{aligned}
$$

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Lemma

PR is closed under iteration

Proof

- suppose $g: \mathbb{N} \rightarrow \mathbb{N} \in P R$
- $f(n, x)=g^{(n)}(x)$ can be defined by primitive recursion:

$$
\begin{aligned}
f(0, x) & =x=\pi_{1}^{1}(x) \\
f(n+1, x) & =g(f(n, x))
\end{aligned}
$$

Definition

function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is obtained from function $g: \mathbb{N} \rightarrow \mathbb{N}$ by iteration if

$$
f(n, x)=g^{(n)}(x)=\underbrace{g(\cdots g}_{n \text { times }}(x) \cdots)
$$

Lemma

PR is closed under iteration

Proof

- suppose $g: \mathbb{N} \rightarrow \mathbb{N} \in \mathrm{PR}$
- $f(n, x)=g^{(n)}(x)$ can be defined by primitive recursion:

$$
\begin{aligned}
f(0, x) & =x=\pi_{1}^{1}(x) \\
f(n+1, x) & =g(f(n, x))=h(f(n, x), n, x)
\end{aligned}
$$

with $h(x, y, z)=g\left(\pi_{1}^{3}(x, y, z)\right)$

Outline

1. Organisation
2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
6. Summary

Example

$\max (x, y)=\left\{\begin{array}{ll}x & \text { if } x \geqslant y \\ y & \text { otherwise }\end{array} \quad\right.$ is primitive recursive

Example

$\Rightarrow \max (x, y)=\left\{\begin{array}{ll}x & \text { if } x \geqslant y \\ y & \text { otherwise }\end{array} \quad\right.$ is primitive recursive ?

Example

- $\max (x, y)=\left\{\begin{array}{ll}x & \text { if } x \geqslant y \\ y & \text { otherwise }\end{array}\right.$ is primitive recursive?

Definition

predicate $P: \mathbb{N}^{n} \rightarrow \mathbb{B}$ is primitive recursive if its characteristic function $\chi_{P}: \mathbb{N}^{n} \rightarrow \mathbb{N}$

$$
\chi_{P}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } P\left(x_{1}, \ldots, x_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

is primitive recursive

Example

$-\max (x, y)=\left\{\begin{array}{ll}x & \text { if } x \geqslant y \\ y & \text { otherwise }\end{array} \quad\right.$ is primitive recursive?

Definition

predicate $P: \mathbb{N}^{n} \rightarrow \mathbb{B}$ is primitive recursive if its characteristic function $\chi_{p}: \mathbb{N}^{n} \rightarrow \mathbb{N}$

$$
\chi_{P}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & \text { if } P\left(x_{1}, \ldots, x_{n}\right) \\ 0 & \text { otherwise }\end{cases}
$$

is primitive recursive

Lemma

if $P, Q: \mathbb{N}^{n} \rightarrow \mathbb{B}$ are primitive recursive predicates then so are
$\neg P$
$P \wedge Q$
$P \vee Q$
$P \Rightarrow Q$

$$
\chi_{\neg P}(\vec{x})=1 \doteq \chi_{P}(\vec{x})
$$

$$
\chi_{\neg P}(\vec{x})=1-\chi_{P}(\vec{x})
$$

$$
\chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

$$
\chi_{\neg P}(\vec{x})=1 \doteq \chi_{P}(\vec{x})
$$

$$
\chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

Examples

- sign function $\operatorname{sg}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{array}\right.$ is primitive recursive

$$
\chi_{\neg P}(\vec{x})=1 \dot{-} \chi_{P}(\vec{x}) \quad \chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

Examples

- sign function $\operatorname{sg}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{array}\right.$ is primitive recursive

$$
\begin{aligned}
\operatorname{sg}(0) & =0 \\
\operatorname{sg}(x+1) & =1
\end{aligned}
$$

$$
\chi_{\neg P}(\vec{x})=1-\chi_{P}(\vec{x}) \quad \chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

Examples

- sign function $\operatorname{sg}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{array}\right.$ is primitive recursive

$$
\begin{aligned}
\operatorname{sg}(0) & =0 \\
\operatorname{sg}(x+1) & =1
\end{aligned}
$$

- $>$ and \neq are primitive recursive predicates

$$
\chi_{\neg P}(\vec{x})=1 \dot{-} \chi_{P}(\vec{x}) \quad \chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

Examples

- sign function $\operatorname{sg}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{array}\right.$ is primitive recursive $\begin{array}{rl}\operatorname{sg}(0) & =0 \\ \operatorname{sg}(x+1) & =1\end{array}$
- $>$ and \neq are primitive recursive predicates

$$
\chi>(x, y)=\operatorname{sg}(x \dot{-} y) \quad \chi_{\neq}(x, y)=\operatorname{sg}((x \dot{-} y)+(y \dot{-} x))
$$

$$
\chi_{\neg P}(\vec{x})=1 \dot{-} \chi_{P}(\vec{x}) \quad \chi_{P \wedge Q}(\vec{x})=\chi_{P}(\vec{x}) \times \chi_{Q}(\vec{x})
$$

Examples

- sign function $\operatorname{sg}(x)=\left\{\begin{array}{ll}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{array}\right.$ is primitive recursive

$$
\begin{aligned}
\operatorname{sg}(0) & =0 \\
\operatorname{sg}(x+1) & =1
\end{aligned}
$$

- $>$ and \neq are primitive recursive predicates

$$
\chi>(x, y)=\operatorname{sg}(x \dot{-} y) \quad \chi_{\neq}(x, y)=\operatorname{sg}((x \dot{-} y)+(y \dot{-} x))
$$

$\Rightarrow=, \geqslant,<$ and \leqslant are primitive recursive predicates

$$
\begin{array}{ll}
x=y \quad & x<y \quad \neg(x \neq y) \\
x \geqslant y \quad & \Longleftrightarrow \quad x>y \vee x=y
\end{array} \quad x \leqslant y \quad \Longleftrightarrow \quad y \geqslant x
$$

Lemma (case analysis)

if $f_{1}, \ldots, f_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $P_{1}, \ldots, P_{k}: \mathbb{N}^{n} \rightarrow \mathbb{B}$ are primitive recursive such that for all $\vec{x} \in \mathbb{N}^{n}$ exactly one of $P_{1}(\vec{x}) \cdots P_{k}(\vec{x})$ holds then

$$
g(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } P_{1}(\vec{x}) \\ \cdots & \cdots \\ f_{k}(\vec{x}) & \text { if } P_{k}(\vec{x})\end{cases}
$$

is primitive recursive

Lemma (case analysis)

if $f_{1}, \ldots, f_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $P_{1}, \ldots, P_{k}: \mathbb{N}^{n} \rightarrow \mathbb{B}$ are primitive recursive such that for all $\vec{x} \in \mathbb{N}^{n}$ exactly one of $P_{1}(\vec{x}) \cdots P_{k}(\vec{x})$ holds then

$$
g(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } P_{1}(\vec{x}) \\ \cdots & \cdots \\ f_{k}(\vec{x}) & \text { if } P_{k}(\vec{x})\end{cases}
$$

is primitive recursive

Proof

$g(\vec{x})=f_{1}(\vec{x}) \times \chi_{P_{1}}(\vec{x})+\cdots+f_{k}(\vec{x}) \times \chi_{P_{k}}(\vec{x})$

Lemma (case analysis)

if $f_{1}, \ldots, f_{k}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $P_{1}, \ldots, P_{k}: \mathbb{N}^{n} \rightarrow \mathbb{B}$ are primitive recursive such that for all $\vec{x} \in \mathbb{N}^{n}$ exactly one of $P_{1}(\vec{x}) \cdots P_{k}(\vec{x})$ holds then

$$
g(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } P_{1}(\vec{x}) \\ \cdots & \cdots \\ f_{k}(\vec{x}) & \text { if } P_{k}(\vec{x})\end{cases}
$$

is primitive recursive

Proof

$g(\vec{x})=f_{1}(\vec{x}) \times \chi_{P_{1}}(\vec{x})+\cdots+f_{k}(\vec{x}) \times \chi_{P_{k}}(\vec{x})$

Example

- $\max (x, y)=\left\{\begin{array}{ll}x & \text { if } x \geqslant y \\ y & \text { if } x<y\end{array}\right.$ is primitive recursive

Example

how to implement

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

in OLAT ?

Example

how to implement

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

in OLAT ?

- $\mathrm{E}=$ getScore("108480307718721")

Example

how to implement

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

in OLAT ?

- $\mathrm{E}=$ getScore("108480307718721")
- P = getScore("108480307713191")
- $\mathrm{T}=$ getScore("108480307740761")
- B = getScore("108480307725070")

Example

how to implement

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

in OLAT ?

- $\mathrm{E}=$ getScore("108480307718721")
- P = getScore("108480307713191")
- $\mathrm{T}=$ getScore("108480307740761")
- B = getScore("108480307725070")

Example

how to implement

$$
\text { score }=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)
$$

in OLAT ?

- $\mathrm{E}=$ getScore("108480307718721")
- P = getScore("108480307713191")
- $\mathrm{T}=$ getScore("108480307740761")
- B = getScore("108480307725070")

$$
\begin{aligned}
& ((((2 *(E+P) / 3+T / 3+B)))>=(T+B)) *(((2 *(E+P) / 3+T / 3+B)))+ \\
& ((((2 *(E+P) / 3+T / 3+B)))<(T+B)) *(T+B)
\end{aligned}
$$

Lemma (bounded sum)

if $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive then

$$
\sum_{i=0}^{x} f(i, \vec{y})
$$

is primitive recursive

Lemma (bounded sum)

if $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive then

$$
\sum_{i=0}^{x} f(i, \vec{y})
$$

is primitive recursive

Proof

$$
g(x, \vec{y})=\sum_{i=0}^{x} f(i, \vec{y})
$$

$$
\begin{aligned}
g(0, \vec{y}) & =f(0, \vec{y}) \\
g(x+1, \vec{y}) & =f(x+1, \vec{y})+g(x, \vec{y})
\end{aligned}
$$

Lemma (bounded sum and product)

if $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is primitive recursive then

$$
\sum_{i=0}^{x} f(i, \vec{y}) \quad \text { and } \quad \prod_{i=0}^{x} f(i, \vec{y})
$$

are primitive recursive

Proof

$$
\begin{array}{rlrl}
g(x, \vec{y}) & =\sum_{i=0}^{x} f(i, \vec{y}) & g(0, \vec{y}) & =f(0, \vec{y}) \\
g(x+1, \vec{y}) & =f(x+1, \vec{y})+g(x, \vec{y}) \\
h(x, \vec{y})=\prod_{i=0}^{x} f(i, \vec{y}) & h(0, \vec{y}) & =f(0, \vec{y}) \\
h(x+1, \vec{y}) & =f(x+1, \vec{y}) \times h(x, \vec{y})
\end{array}
$$

Lemma (bounded quantification)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\forall i \leqslant x) P(i, \vec{y}) \quad \text { and } \quad(\exists i \leqslant x) P(i, \vec{y})
$$

are primitive recursive

Lemma (bounded quantification)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\forall i \leqslant x) P(i, \vec{y}) \quad \text { and } \quad(\exists i \leqslant x) P(i, \vec{y})
$$

are primitive recursive

Proof

$$
Q(x, \vec{y})=(\forall i \leqslant x) P(i, \vec{y}) \quad \chi_{Q}(x, \vec{y})=\prod_{i \leqslant x} \chi_{P}(i, \vec{y})
$$

Lemma (bounded quantification)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\forall i \leqslant x) P(i, \vec{y}) \quad \text { and } \quad(\exists i \leqslant x) P(i, \vec{y})
$$

are primitive recursive

Proof

$$
\begin{array}{ll}
Q(x, \vec{y})=(\forall i \leqslant x) P(i, \vec{y}) & \chi_{Q}(x, \vec{y})=\prod_{i \leqslant x} \chi_{P}(i, \vec{y}) \\
R(x, \vec{y})=(\exists i \leqslant x) P(i, \vec{y}) & \chi_{R}(x, \vec{y})=\operatorname{sg}\left(\sum_{i \leqslant x} \chi_{P}(i, \vec{y})\right)
\end{array}
$$

Examples

- x is divisor of y
$x \mid y \quad \Longleftrightarrow \quad(\exists i \leqslant y)[i \times x=y]$

Examples

$>x$ is divisor of y

- x is prime number
$x \mid y \quad \Longleftrightarrow \quad(\exists i \leqslant y)[i \times x=y]$
$\operatorname{prime}(x) \Longleftrightarrow x>1 \wedge(\forall i \leqslant x)[i \mid x \Longrightarrow i=1 \vee i=x]$

Examples

- x is divisor of y

$$
\begin{aligned}
x \mid y & \Longleftrightarrow(\exists i \leqslant y)[i \times x=y] \\
\operatorname{prime}(x) & \Longleftrightarrow x>1 \wedge(\forall i \leqslant x)[i \mid x \Longrightarrow i=1 \vee i=x]
\end{aligned}
$$

- x is prime number

Lemma (bounded minimization)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\}
$$

is primitive recursive

Examples

- x is divisor of y

$$
\begin{aligned}
x \mid y & \Longleftrightarrow(\exists i \leqslant y)[i \times x=y] \\
\operatorname{prime}(x) & \Longleftrightarrow x>1 \wedge(\forall i \leqslant x)[i \mid x \Longrightarrow i=1 \vee i=x]
\end{aligned}
$$

Lemma (bounded minimization)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\}
$$

is primitive recursive

Examples

- x is divisor of y
- x is prime number

$$
\begin{aligned}
x \mid y & \Longleftrightarrow(\exists i \leqslant y)[i \times x=y] \\
\operatorname{prime}(x) & \Longleftrightarrow x>1 \wedge(\forall i \leqslant x)[i \mid x \Longrightarrow i=1 \vee i=x]
\end{aligned}
$$

Lemma (bounded minimization)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\}
$$

is primitive recursive

Example

- $\left\lfloor\frac{x}{2}\right\rfloor$ is primitive recursive:

Examples

- x is divisor of y
- x is prime number

$$
\begin{aligned}
x \mid y & \Longleftrightarrow(\exists i \leqslant y)[i \times x=y] \\
\operatorname{prime}(x) & \Longleftrightarrow x>1 \wedge(\forall i \leqslant x)[i \mid x \Longrightarrow i=1 \vee i=x]
\end{aligned}
$$

Lemma (bounded minimization)

if $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ is primitive recursive then

$$
(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\}
$$

is primitive recursive

Example

- $\left\lfloor\frac{x}{2}\right\rfloor$ is primitive recursive:

$$
\left\lfloor\frac{x}{2}\right\rfloor=(\mu i \leqslant x)[(i+1) \times 2>x]
$$

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})= \begin{cases}0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})=\left\{\begin{array}{ll}
0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }
\end{array} \quad f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i \leqslant x) P(i, \vec{y}) \\
x+1 & \text { if } \neg(\exists i \leqslant x) P(i, \vec{y}) \text { and } P(x+1, \vec{y}) \\
x+2 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})=\left\{\begin{array}{ll}
0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }
\end{array} \quad f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i \leqslant x) P(i, \vec{y}) \\
x+1 & \text { if } \neg(\exists i \leqslant x) P(i, \vec{y}) \text { and } P(x+1, \vec{y}) \\
x+2 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Examples

- division $x \div y=(\mu i \leqslant x)[(i+1) \times y>x]$

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})=\left\{\begin{array}{ll}
0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }
\end{array} \quad f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i \leqslant x) P(i, \vec{y}) \\
x+1 & \text { if } \neg(\exists i \leqslant x) P(i, \vec{y}) \text { and } P(x+1, \vec{y}) \\
x+2 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Examples

- division

$$
\begin{aligned}
x \div y & =(\mu i \leqslant x)[(i+1) \times y>x] \\
\exp (x, y) & =(\mu i \leqslant x)\left[y^{i} \mid x \wedge \neg\left(y^{i+1} \mid x\right)\right]
\end{aligned}
$$

- exponent

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})=\left\{\begin{array}{ll}
0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }
\end{array} \quad f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i \leqslant x) P(i, \vec{y}) \\
x+1 & \text { if } \neg(\exists i \leqslant x) P(i, \vec{y}) \text { and } P(x+1, \vec{y}) \\
x+2 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Examples

- division

$$
\begin{aligned}
x \div y & =(\mu i \leqslant x)[(i+1) \times y>x] \\
\exp (x, y) & =(\mu i \leqslant x)\left[y^{i} \mid x \wedge \neg\left(y^{i+1} \mid x\right)\right] \\
x \bmod y & =x \dot{-}(y \times(x \div y))
\end{aligned}
$$

- exponent
- remainder

$$
\begin{aligned}
& f(x, \vec{y})=(\mu i \leqslant x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i \leqslant x \wedge P(i, \vec{y})\} \cup\{x+1\} \\
& f(0, \vec{y})=\left\{\begin{array}{ll}
0 & \text { if } P(0, \vec{y}) \\
1 & \text { otherwise }
\end{array} \quad f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i \leqslant x) P(i, \vec{y}) \\
x+1 & \text { if } \neg(\exists i \leqslant x) P(i, \vec{y}) \text { and } P(x+1, \vec{y}) \\
x+2 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Examples

- division

$$
x \div y=(\mu i \leqslant x)[(i+1) \times y>x]
$$

- exponent

$$
\exp (x, y)=(\mu i \leqslant x)\left[y^{i} \mid x \wedge \neg\left(y^{i+1} \mid x\right)\right]
$$

- remainder $\quad x \bmod y=x \dot{-}(y \times(x \div y))$
- n-th prime number p_{n}

$$
\begin{array}{rlrl}
\mathrm{p}_{0} & =2 \quad \text { with } \quad f(x) & =g(x!+1, x) \\
\mathrm{p}_{n+1} & =f\left(\mathrm{p}_{n}\right) \quad & g(x, y) & =(\mu i \leqslant x)[\operatorname{prime}(i) \wedge i>y]
\end{array}
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
g(x, \vec{y})=\sum_{i<x} f(i, \vec{y})
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
g(x, \vec{y})=\sum_{i<x} f(i, \vec{y})
$$

$$
\begin{aligned}
g(0, \vec{y}) & =0 \\
g(x+1, \vec{y}) & =f(x, \vec{y})+g(x, \vec{y})
\end{aligned}
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
\begin{array}{lr}
g(x, \vec{y})=\sum_{i<x} f(i, \vec{y}) & \begin{aligned}
g(0, \vec{y}) & =0 \\
g(x+1, \vec{y}) & =f(x, \vec{y})+g(x, \vec{y})
\end{aligned} \\
Q(x, \vec{y})=(\exists i<x) P(i, \vec{y}) &
\end{array}
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
\begin{array}{rlrl}
g(x, \vec{y}) & =\sum_{i<x} f(i, \vec{y}) & g(0, \vec{y}) & =0 \\
g(x+1, \vec{y}) & =f(x, \vec{y})+g(x, \vec{y}) \\
Q(x, \vec{y})=(\exists i<x) P(i, \vec{y}) & \chi_{Q}(x, \vec{y}) & =\operatorname{sg}\left(\sum_{i<x} \chi_{P}(i, \vec{y})\right)
\end{array}
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
\begin{array}{rlrl}
g(x, \vec{y}) & =\sum_{i<x} f(i, \vec{y}) & g(0, \vec{y}) & =0 \\
g(x+1, \vec{y}) & =f(x, \vec{y})+g(x, \vec{y}) \\
Q(x, \vec{y})=(\exists i<x) P(i, \vec{y}) & \chi Q_{Q}(x, \vec{y}) & =\operatorname{sg}\left(\sum_{i<x} \chi_{P}(i, \vec{y})\right) \\
f(x, \vec{y})=(\mu i<x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i<x \wedge P(i, \vec{y})\} \cup\{x\}
\end{array}
$$

Remark

replacing $i \leqslant x$ by $i<x$ does not affect closure under bounded minimization

Proof

$$
\begin{aligned}
& g(x, \vec{y})=\sum_{i<x} f(i, \vec{y}) \\
& g(0, \vec{y})=0 \\
& g(x+1, \vec{y})=f(x, \vec{y})+g(x, \vec{y}) \\
& Q(x, \vec{y})=(\exists i<x) P(i, \vec{y}) \quad \chi_{Q}(x, \vec{y})=\operatorname{sg}\left(\sum_{i<x} \chi_{P}(i, \vec{y})\right) \\
& f(x, \vec{y})=(\mu i<x) P(i, \vec{y})=\min \{i \mid 0 \leqslant i<x \wedge P(i, \vec{y})\} \cup\{x\} \\
& f(0, \vec{y})=0 \\
& f(x+1, \vec{y})= \begin{cases}f(x, \vec{y}) & \text { if }(\exists i<x) P(i, \vec{y}) \\
x & \text { if } \neg(\exists i<x) P(i, \vec{y}) \text { and } P(x, \vec{y}) \\
x+1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Outline

1. Organisation
2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
6. Summary

Example

- Fibonacci function $\mathrm{fib}(x)$

$$
\begin{aligned}
\mathrm{fib}(0) & =1 \\
\mathrm{fib}(1) & =1 \\
\mathrm{fib}(x+2) & =\mathrm{fib}(x+1)+\mathrm{fib}(x)
\end{aligned}
$$

is primitive recursive

Example

- Fibonacci function $\mathrm{fib}(x)$

$$
\begin{aligned}
\mathrm{fib}(0) & =1 \\
\mathrm{fib}(1) & =1 \\
\mathrm{fib}(x+2) & =\mathrm{fib}(x+1)+\mathrm{fib}(x) \quad \text { course-of-values recursion }
\end{aligned}
$$

is primitive recursive ?

Example

- Fibonacci function $\mathrm{fib}(x)$

$$
\begin{aligned}
\mathrm{fib}(0) & =1 \\
\mathrm{fib}(1) & =1 \\
\mathrm{fib}(x+2) & =\mathrm{fib}(x+1)+\mathrm{fib}(x) \quad \text { course-of-values recursion }
\end{aligned}
$$

is primitive recursive ?

Idea

combine fib $(x+1)$ and fib(x) into a single number from which fib $(x+1)$ and fib (x) can be obtained by suitable primitive recursive extraction functions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$

Definitions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$
- extraction functions $\pi_{1}(z)=(\mu x \leqslant z)(\exists y \leqslant z)[z=\pi(x, y)]$ $\pi_{2}(z)=(\mu y \leqslant z)(\exists x \leqslant z)[z=\pi(x, y)]$

Definitions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$
- extraction functions $\pi_{1}(z)=(\mu x \leqslant z)(\exists y \leqslant z)[z=\pi(x, y)]$ $\pi_{2}(z)=(\mu y \leqslant z)(\exists x \leqslant z)[z=\pi(x, y)]$

Lemmata

(1) $x, y \leqslant \pi(x, y)$

Definitions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$
- extraction functions $\pi_{1}(z)=(\mu x \leqslant z)(\exists y \leqslant z)[z=\pi(x, y)]$ $\pi_{2}(z)=(\mu y \leqslant z)(\exists x \leqslant z)[z=\pi(x, y)]$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$

Definitions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$
- extraction functions $\pi_{1}(z)=(\mu x \leqslant z)(\exists y \leqslant z)[z=\pi(x, y)]$ $\pi_{2}(z)=(\mu y \leqslant z)(\exists x \leqslant z)[z=\pi(x, y)]$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$
(3) $\pi\left(\pi_{1}(z), \pi_{2}(z)\right)=z$

Definitions

- pairing function $\pi(x, y)=2^{x}(2 y+1)-1$
- extraction functions $\pi_{1}(z)=(\mu x \leqslant z)(\exists y \leqslant z)[z=\pi(x, y)]$ $\pi_{2}(z)=(\mu y \leqslant z)(\exists x \leqslant z)[z=\pi(x, y)]$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$
(3) $\pi\left(\pi_{1}(z), \pi_{2}(z)\right)=z$
(4) π, π_{1}, π_{2} are primitive recursive

Lemmata

(1) $x, y \leqslant \pi(x, y)$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-} 1 \geqslant x$

Lemmata

(1) $x, y \leqslant \pi(x, y)$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-1 \geqslant x}$ $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-1 \geqslant x}$ $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$
(2) $\pi_{1}(\pi(x, y))=\left(\mu x^{\prime} \leqslant \pi(x, y)\right)\left(\exists y^{\prime} \leqslant \pi(x, y)\right)\left[\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right]$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-} 1 \geqslant x$ $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$
(2) $\pi_{1}(\pi(x, y))=\left(\mu x^{\prime} \leqslant \pi(x, y)\right)\left(\exists y^{\prime} \leqslant \pi(x, y)\right)\left[\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right]$ π is injective $\Longrightarrow \pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)$ only holds when $x^{\prime}=x$ and $y^{\prime}=y$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$
(3) $\pi\left(\pi_{1}(z), \pi_{2}(z)\right)=z$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-1 \geqslant x}$
$\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$
(2) $\pi_{1}(\pi(x, y))=\left(\mu x^{\prime} \leqslant \pi(x, y)\right)\left(\exists y^{\prime} \leqslant \pi(x, y)\right)\left[\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right]$
π is injective $\Longrightarrow \pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)$ only holds when $x^{\prime}=x$ and $y^{\prime}=y$
(3) π is surjective $\Longrightarrow z=\pi(x, y)$ for some x and y

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$
(3) $\pi\left(\pi_{1}(z), \pi_{2}(z)\right)=z$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-1 \geqslant x}$
$\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$
(2) $\pi_{1}(\pi(x, y))=\left(\mu x^{\prime} \leqslant \pi(x, y)\right)\left(\exists y^{\prime} \leqslant \pi(x, y)\right)\left[\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right]$
π is injective $\Longrightarrow \pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)$ only holds when $x^{\prime}=x$ and $y^{\prime}=y$
(3) π is surjective $\Longrightarrow z=\pi(x, y)$ for some x and y
$\pi_{1}(z)=x$ and $\pi_{2}(z)=y$

Lemmata

(1) $x, y \leqslant \pi(x, y)$
(2) $\pi_{1}(\pi(x, y))=x$ and $\pi_{2}(\pi(x, y))=y$
(3) $\pi\left(\pi_{1}(z), \pi_{2}(z)\right)=z$

Proof

(1) $\pi(x, y)=2^{x}(2 y+1)-1 \geqslant 2^{x} \dot{-1 \geqslant x}$
$\pi(x, y)=2^{x}(2 y+1)-1 \geqslant(2 y+1)-1=2 y \geqslant y$
(2) $\pi_{1}(\pi(x, y))=\left(\mu x^{\prime} \leqslant \pi(x, y)\right)\left(\exists y^{\prime} \leqslant \pi(x, y)\right)\left[\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)\right]$
π is injective $\Longrightarrow \pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right)$ only holds when $x^{\prime}=x$ and $y^{\prime}=y$
(3) π is surjective $\Longrightarrow z=\pi(x, y)$ for some x and y

$$
\pi_{1}(z)=x \text { and } \pi_{2}(z)=y \quad \Longrightarrow \quad z=\pi\left(\pi_{1}(z), \pi_{2}(z)\right)
$$

fib is primitive recursive

Proof

- $g(x)=\pi(\operatorname{fib}(x), \operatorname{fib}(x+1))$ is primitive recursive

Lemma

fib is primitive recursive

Proof

- $g(x)=\pi(\mathrm{fib}(x), \mathrm{fib}(x+1))$ is primitive recursive:

$$
\begin{aligned}
g(0) & =\pi(1,1) \\
g(x+1) & =\pi\left(\pi_{2}(g(x)), \pi_{1}(g(x))+\pi_{2}(g(x))\right)
\end{aligned}
$$

Lemma

fib is primitive recursive

Proof

- $g(x)=\pi(\mathrm{fib}(x), \mathrm{fib}(x+1))$ is primitive recursive:

$$
\begin{aligned}
g(0) & =\pi(1,1) \\
g(x+1) & =\pi\left(\pi_{2}(g(x)), \pi_{1}(g(x))+\pi_{2}(g(x))\right)
\end{aligned}
$$

- $\operatorname{fib}(x)=\pi_{1}(g(x))$

Outline

```
1. Organisation
2. Contents
3. Primitive Recursive Functions
4. Primitive Recursive Predicates
5. Pairing
```


6. Summary

Important Concepts

- bounded minimization
- bounded quantification
- case analysis
- characteristic function
- composition
- initial function
- iteration
- pairing
- PR
- primitive recursion

Important Concepts

- bounded minimization
- composition
- pairing
- bounded quantification
- initial function
- case analysis
- iteration
- PR
- characteristic function
homework for October 9

