

## Computability Theory

Aart Middeldorp

## Outline

1. Summary of Previous Lecture
2. Loop Programs
3. Elementary Functions
4. Grzegorczyk Hierarchy
5. Summary

## Definitions

- $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\mathrm{p}_{0}^{n} \times \mathrm{p}_{1}^{x_{1}} \times \cdots \times \mathrm{p}_{n}^{x_{n}} \quad$ Gödel number
- $(x)_{i}=(\mu j<x) \neg\left(p_{i}^{j+1} \mid x\right)$
- len $(x)=(x)_{0}$
- $\operatorname{seq}(x) \Longleftrightarrow x>0 \wedge(\forall i \leqslant x)\left[(x)_{i} \neq 0 \Longrightarrow i \leqslant \operatorname{len}(x)\right]$
$-x ; y=\mathrm{p}_{0}^{\operatorname{len}(x)+\operatorname{len}(y)} \times \prod_{i<\operatorname{len}(x)} \mathrm{p}_{i+1}^{(x)_{i+1}} \times \prod_{i<\operatorname{len}(y)} \mathrm{p}_{\operatorname{len}(x)+i+1}^{(y)_{i+1}}$


## Lemma

PR is closed under course-of-values recursion:
if $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ are primitive recursive then

$$
f(0, \vec{y})=g(\vec{y}) \quad f(x+1, \vec{y})=h(\tilde{f}(x, \vec{y}), x, \vec{y})
$$

with $\tilde{f}(x, \vec{y})=\langle f(0, \vec{y}), \ldots, f(x, \vec{y})\rangle$ is primitive recursive

## Definition (Ackermann function)

$$
\begin{aligned}
\operatorname{ack}(0, y) & =y+1 \\
\operatorname{ack}(x+1,0) & =\operatorname{ack}(x, 1) \\
\operatorname{ack}(x+1, y+1) & =\operatorname{ack}(x, \operatorname{ack}(x+1, y))
\end{aligned}
$$

## Lemma

$\forall$ primitive recursive function $f: \mathbb{N}^{n} \rightarrow \mathbb{N} \exists$ constant $c \in \mathbb{N}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)<\operatorname{ack}\left(c, \max \left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

## Theorem

Ackermann function is not primitive recursive

## Definition

class $R$ of recursive functions is smallest class of total functions that contains all initial functions and is closed under composition, primitive recursion and (unbounded) minimization:

$$
(\mu i) P(i, \vec{y})=\min \{i \mid P(i, \vec{y})\} \in \mathrm{R}
$$

for all $P: \mathbb{N}^{n+1} \rightarrow \mathbb{B}$ such that $\chi_{P} \in \mathrm{R}$ and $\forall \vec{y} \exists x P(x, \vec{y})$

## Theorem

- $\exists$ primitive recursive predicate $P: \mathbb{N} \rightarrow \mathbb{B}$ such that

$$
P(x) \quad \Longleftrightarrow \quad x \text { encodes correct Ackermann computation tree }
$$

- $\operatorname{ack}(x, y)=z \quad \Longleftrightarrow \quad \exists t$ such that $P(t)$ and $(t)_{1}=\langle x, y, z\rangle$
$-\operatorname{ack}(x, y)=\left((\mu t)\left(P(t) \wedge(t)_{1,1}=x \wedge(t)_{1,2}=y\right)\right)_{1,3}$
- Ackermann function is recursive


## Definition

index $\ulcorner f\urcorner \in \mathbb{N}$ of derivation of primitive recursive function $f$ is defined inductively:

- $\ulcorner\mathrm{z}\urcorner=\langle 0\rangle$
- $\ulcorner\mathrm{s}\urcorner=\langle 1\rangle$
- $\left\ulcorner\pi_{i}^{n\urcorner}=\langle 2, n, i\rangle\right.$
- $\ulcorner f\urcorner=\left\langle 3,\ulcorner g\urcorner,\left\ulcorner h_{1}\right\urcorner, \ldots,\left\ulcorner h_{m}\right\urcorner\right\rangle$ if $f$ is obtained by composing $g$ and $h_{1}, \ldots, h_{m}$
- $\ulcorner f\urcorner=\langle 4,\ulcorner g\urcorner,\ulcorner h\urcorner\rangle$ if $f$ is obtained by primitive recursion from $g$ and $h$


## Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's $\beta$ function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

## Part II: Combinatory Logic and Lambda Calculus

$\alpha$-equivalence, abstraction, arithmetization, $\beta$-reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, $\eta$-reduction, fixed point theorem, intuitionistic propositional logic, $\lambda$-definability, normalization theorem, termination, typing, undecidability, Z property, ...

## Outline

## 1. Summary of Previous Lecture

## 2. Loop Programs

3. Elementary Functions
4. Grzegorczyk Hierarchy
5. Summary

## Loop Programs

simple programming language

- natural numbers are only data type
- variables $x, y, z, \ldots$
- commands
- assignment $x:=0 \quad x:=y$
- increment $x++$
- composition $P ; Q$
- loop
- LOOP x DO P OD
execute $P$ exactly $n$ times, where $n$ is value of $x$ before entering loop


## Examples

program $P$ :
$z:=x ;$
LOOP y DO
$z++$
OD
computes addition: $z=x+y$
multiplication $(x, y ; z)$ :

$$
\begin{aligned}
& z:=0 ; \\
& \text { LOOP } x \text { DO } \\
& \quad \text { LOOP y DO } \\
& \quad z++ \\
& \text { OD } \\
& \text { OD }
\end{aligned}
$$

notation: $P(x, y ; z)$

## Examples

program $P(x ; y)$ :

$$
\begin{aligned}
& y:=0 ; \\
& z:=0 ; \\
& \text { LOOP } x \text { DO } \\
& \quad y:=z ; \\
& z++ \\
& \text { OD }
\end{aligned}
$$

computes predecessor: $\quad y=p(x)$
program $Q(x ; y)$ :

$$
\begin{aligned}
& y:=0 ; \\
& z:=0 ; \\
& z++; \\
& \text { LOOP } x \text { DO } \\
& \quad y:=z \\
& \text { OD }
\end{aligned}
$$

computes sign function: $y=\operatorname{sg}(x)$

LOOP programs terminate

## Definition

function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is LOOP computable if $\exists$ LOOP program $P\left(x_{1}, \ldots, x_{n} ; y\right)$ such that

$$
y=f\left(x_{1}, \ldots, x_{n}\right)
$$

after execution of $P$

## Theorem

primitive recursive functions are LOOP computable

- zero

$$
\begin{array}{lll}
\text { - zero } & y=z(x) & y:=0 \\
\text { - successor } & y=s(x) & y:=x ; y++ \\
\text { - projection } & y=\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) & y:=x_{i} \\
\text { - composition } & y=g\left(h_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, h_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
\end{array}
$$

$$
P_{h_{1}}\left(x_{1}, \ldots, x_{m} ; y_{1}\right) ; \ldots ; P_{h_{n}}\left(x_{1}, \ldots, x_{m} ; y_{n}\right) ; P_{g}\left(y_{1}, \ldots, y_{n} ; y\right)
$$

- primitive recursion

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(f(x, \vec{y}), x, \vec{y})
\end{aligned}
$$

$$
\begin{aligned}
& P_{g}\left(y_{1}, \ldots, y_{n} ; z\right) ; \\
& v:=0 ; \\
& \text { LOOP } x \text { DO } \\
& \quad P_{h}\left(z, v, y_{1}, \ldots, y_{n} ; w\right) ; \\
& \quad z:=w ; \\
& \quad v++ \\
& \text { OD }
\end{aligned}
$$

## Theorem

LOOP computable functions are primitive recursive

## Proof

- LOOP program $P$ with variables $x_{1}, \ldots, x_{n}$
- claim: $\exists$ primitive recursive functions $f_{1}, \ldots, f_{n}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ such that
if $x_{1}, \ldots, x_{n}$ have values $a_{1}, \ldots, a_{n}$ before execution of $P$
then $x_{i}$ has value $f_{i}\left(a_{1}, \ldots, a_{n}\right)$ after execution of $P$, for all $1 \leqslant i \leqslant n$
- claim is proved by induction on structure of $P$ (details left as exercise)


## Example

$f_{P}(x, y)=f_{3}(x, y, 0,0,0)$ for LOOP program $P$ with input variables $x_{1}$ and $x_{2}$, output variable $x_{3}$, and auxiliary variables $x_{4}$ and $x_{5}$

## Outline

1. Summary of Previous Lecture
2. Loop Programs

## 3. Elementary Functions

4. Grzegorczyk Hierarchy
5. Summary

## Definition

class E of elementary functions is smallest class of (total) functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ that contains all initial functions,,+- and is closed under composition, bounded summation and bounded product

## Examples

$x \times y, x^{y}$ and $x$ ! are elementary functions:
$\Rightarrow x \times y=\sum_{i<x} y=\sum_{i<x} \pi_{2}^{2}(i, y)$
$\Rightarrow x^{y}=\prod_{i<y} x=\prod_{i<y} \pi_{2}^{2}(i, x)$
$\triangleright x!=\prod_{i<x} i+1=\prod_{i<x} \mathrm{~s}(i)$
$E$ is closed under bounded minimization

## Proof

- consider $f(x, \vec{y})=(\mu i \leqslant x)(g(i, \vec{y})=0)$ with $g \in \mathrm{E}$
- elementary function

$$
f^{\prime}(x, \vec{y})=\sum_{i \leqslant x} 1 \dot{\succ} g(i, \vec{y})
$$

counts how many values $i \in\{0, \ldots, x\}$ satisfy $g(i, \vec{y})=0$

- $f(x, \vec{y})=\sum_{i \leqslant x} 1-f^{\prime}(i, \vec{y}) \quad$ is elementary


## Lemma

elementary functions are primitive recursive

## Definition

binary function $2_{x}(y)$ is defined by primitive recursion

$$
2_{0}(y)=y \quad 2_{x+1}(y)=2^{2_{x}(y)}
$$

## Example

$2_{0}(3)=3 \quad 2_{1}(3)=2^{3}=8 \quad 2_{2}(3)=2^{8}=256$

## Lemma

$\forall$ elementary function $f: \mathbb{N}^{n} \rightarrow \mathbb{N} \exists$ constant $c \in \mathbb{N}$ such that

$$
f\left(x_{1}, \ldots, x_{n}\right)<2_{c}\left(\max \left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

## Proof

induction on definition of elementary functions

- initial functions

$$
\begin{aligned}
& \mathrm{z}(x)=0<2^{x}=2_{1}(x) \\
& \mathrm{s}(x)=x+1<2^{2^{x}}=2_{2}(x) \\
& \pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} \leqslant \max \left\{x_{1}, \ldots, x_{n}\right\}<2_{1}\left(\max \left\{x_{1}, \ldots, x_{n}\right\}\right) \\
+ & + \text { and }-\quad x-y \leqslant x+y \leqslant 2 \times \max \{x, y\}<2_{2}(\max \{x, y\})
\end{aligned}
$$

- composition $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right)$

$$
\begin{aligned}
& g(\vec{y})<2_{c}(\max \{\vec{y}\}) \quad h_{i}(\vec{x})<2_{c_{i}}(\max \{\vec{x}\}) \text { for all } 1 \leqslant i \leqslant m \\
& \begin{aligned}
f(\vec{x}) & <2_{c}\left(\max \left\{h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right\}\right)<2_{c}\left(\max \left\{2_{c_{1}}(\max \{\vec{x}\}), \ldots, 2_{c_{m}}(\max \{\vec{x}\})\right\}\right) \\
& =2_{c}\left(2_{\max \left\{c_{1}, \ldots, c_{m}\right\}}(\max \{\vec{x}\})\right)=2_{c+\max \left\{c_{1}, \ldots, c_{m}\right\}}(\max \{\vec{x}\})
\end{aligned}
\end{aligned}
$$

## Proof (cont'd)

induction on definition of elementary functions

- bounded summation $f(x, \vec{y})=\sum_{i=0}^{x} g(i, \vec{y})$ with $g(i, \vec{y})<2_{c}(\max \{i, \vec{y}\})$

$$
f(x, \vec{y})<(x+1) \times 2_{c}(\max \{x, \vec{y}\}) \leqslant 2_{2}(\max \{x, \vec{y}\}) \times 2_{c}(\max \{x, \vec{y}\}) \leqslant 2_{c+3}(\max \{x, \vec{y}\})
$$

## Lemma

$$
x^{y} \leqslant 2_{3}(\max \{x, y\})
$$

## Proof

$$
x^{y} \leqslant 2^{x y} \leqslant 2^{2^{x+y}} \leqslant 2^{2^{2^{\max x}\{x, y\}}}=2_{3}(\max \{x, y\})
$$

## Proof (cont'd)

induction on definition of elementary functions

- bounded product $f(x, \vec{y})=\prod_{i=0}^{x} g(i, \vec{y})$ with $g(i, \vec{y})<2_{c}(\max \{i, \vec{y}\})$

$$
\begin{aligned}
f(x, \vec{y}) & <2_{c}(\max \{x, \vec{y}\})^{x+1} \leqslant 2_{c}(\max \{x, \vec{y}\})^{2_{1}(\max \{x, \vec{y}\})} \\
& \leqslant 2_{3}\left(\max \left\{2_{c}(\max \{x, \vec{y}\}), 2_{1}(\max \{x, \vec{y}\})\right\}\right)=2_{3}\left(2_{\max \{c, 1\}}(\max \{x, \vec{y}\})\right) \\
& =2_{3+\max \{c, 1\}}(\max \{x, \vec{y}\})
\end{aligned}
$$

## Corollary

## $\mathrm{E} \subsetneq \mathrm{PR}$

## Proof

if primitive recursive function $2_{x}(y)$ is elementary then $2_{x}(y)<2_{c}(\max \{x, y\})$ for some constant $c$ and thus $2_{c}(c)<2_{c}(\max \{c, c\})=2_{c}(c)$

## Outline

1. Summary of Previous Lecture
2. Loop Programs
3. Elementary Functions
4. Grzegorczyk Hierarchy
5. Summary

## Definition (bounded recursion)

class $C$ of numeric functions is closed under bounded recursion if $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by primitive recursion from $g: \mathbb{N}^{n} \rightarrow \mathbb{N} \in C$ and $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N} \in C$ and satisfying

$$
f(x, \vec{y}) \leqslant i(x, \vec{y})
$$

for some $i: \mathbb{N}^{n+1} \rightarrow \mathbb{N} \in C$ different from $f$ belongs to $C$

## Definitions

- $\mathrm{e}_{0}(x, y)=x+y \quad \mathrm{e}_{1}(x)=x^{2}+2$
- $\mathrm{e}_{n+2}(x)= \begin{cases}2 & \text { if } x=0 \\ \mathrm{e}_{n+1}\left(\mathrm{e}_{n+2}(x-1)\right) & \text { if } x>0\end{cases}$


## Example

$$
e_{2}(0)=2 \quad e_{2}(1)=6 \quad e_{2}(3)=e_{1}\left(e_{2}(2)\right)=e_{1}(38)=1446
$$

$e_{n+2}(x)= \begin{cases}2 & \text { if } x=0 \\ e_{n+1}\left(e_{n+2}(x-1)\right) & \text { if } x>0\end{cases}$

$$
f^{(x)}(y)= \begin{cases}y & \text { if } x=0 \\ f\left(f^{(x-1)}(y)\right) & \text { if } x>0\end{cases}
$$

## Lemma

$e_{n+2}(x)=e_{n+1}^{(x)}(2)$

## Proof

induction on $x$

- $\mathrm{e}_{n+2}(0)=2=\mathrm{e}_{n+1}^{(0)}(2)$
- $\mathrm{e}_{n+2}(x+1)=\mathrm{e}_{n+1}\left(\mathrm{e}_{n+2}(x)\right)=\mathrm{e}_{n+1}\left(\mathrm{e}_{n+1}^{(x)}(2)\right)=\mathrm{e}_{n+1}^{(x+1)}(2)$


## Definitions

- $\mathrm{E}_{0}$ is smallest class of functions that contains all initial functions and is closed under composition and bounded recursion
- $\mathrm{E}_{n+1}$ is smallest class of functions that contains all initial functions, $\mathrm{e}_{0}, \mathrm{e}_{n}$ and is closed under composition and bounded recursion


## Examples

- $E_{0}$ contains $f(x)=x+2$
- $\mathrm{E}_{1}$ contains $f(x)=4 x$
- $E_{2}$ contains $f(x)=x^{4}$
- $\mathrm{E}_{3}$ contains $f(x)=2^{2^{x}}$


## Lemma

$\forall f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{E}_{0} \quad \exists c \in \mathbb{N} \quad$ such that $\quad f\left(x_{1}, \ldots, x_{n}\right) \leqslant \max \left\{x_{1}, \ldots, x_{n}\right\}+c$

## Proof

- $z(x) \leqslant x$
- $s(x) \leqslant x+1$
- $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right) \leqslant x_{i} \leqslant \max \left\{x_{1}, \ldots, x_{n}\right\}$
- $f$ is obtained by composing $g$ and $h_{1}, \ldots, h_{m}$

$$
\begin{array}{rlr}
f(\vec{x}) & =g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right) \leqslant \max \left\{h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right\}+c_{g} \quad g \in \mathrm{E}_{0} \\
& \leqslant \max \{\vec{x}\}+\max \left\{c_{h_{1}}, \ldots, c_{h_{m}}\right\}+c_{g} & h_{1}, \ldots, h_{m} \in \mathrm{E}_{0}
\end{array}
$$

- $f$ is obtained by bounded recursion from $g$ and $h$ with bound $i$

$$
f(\vec{x}) \leqslant i(\vec{x}) \leqslant \max \left\{x_{1}, \ldots, x_{n}\right\}+c_{i}
$$

$$
i \in \mathrm{E}_{0}
$$

## Lemma

$\forall f: \mathbb{N}^{n} \rightarrow \mathbb{N} \in \mathrm{E}_{1} \quad \exists$ linear function $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ such that $f\left(x_{1}, \ldots, x_{n}\right) \leqslant g\left(x_{1}, \ldots, x_{n}\right)$

## Proof

- ...
- $f=\mathrm{e}_{0}=x+y$
- $f$ is obtained by composing $g$ and $h_{1}, \ldots, h_{m}$

$$
\begin{array}{rlr}
f(\vec{x}) & =g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right) \leqslant \ell_{g}\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right) & g \in \mathrm{E}_{1} \\
& \leqslant \ell_{g}\left(\ell_{h_{1}}(\vec{x}), \ldots, \ell_{h_{m}}(\vec{x})\right) & h_{1}, \ldots, h_{m} \in \mathrm{E}_{1}
\end{array}
$$

linear functions are closed under composition

## Lemma

(1) $\mathrm{e}_{n}(x)>x$

$$
\text { (2) } \mathrm{e}_{n}(x+1)>\mathrm{e}_{n}(x)
$$

$$
\text { (3) } \mathrm{e}_{n+1}(x) \geqslant \mathrm{e}_{n}(x)
$$

$$
\text { (4) } \mathrm{e}_{n+1}(x+k) \geqslant \mathrm{e}_{n}^{(k)}(x)
$$

$$
\begin{array}{r}
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \forall k \geqslant 0
\end{array}
$$

## Proof 1

induction on $n>0$

- $\mathrm{e}_{1}(x)=x^{2}+2>x$
- induction on $x \geqslant 0$
- $e_{n+1}(0)=2>0$
- $\mathrm{e}_{n+1}(x+1)=\mathrm{e}_{n}\left(\mathrm{e}_{n+1}(x)\right)>\mathrm{e}_{n+1}(x)>x \quad \Longrightarrow \quad \mathrm{e}_{n+1}(x+1)>x+1$


## Lemma

(1) $\mathrm{e}_{n}(x)>x$

$$
\text { (2) } \mathrm{e}_{n}(x+1)>\mathrm{e}_{n}(x)
$$

$$
\text { (3) } \mathrm{e}_{n+1}(x) \geqslant \mathrm{e}_{n}(x)
$$

$$
\text { (4) } \mathrm{e}_{n+1}(x+k) \geqslant \mathrm{e}_{n}^{(k)}(x)
$$

$$
\begin{array}{r}
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \\
\forall n \geqslant 1 \forall x \geqslant 0 \forall k \geqslant 0
\end{array}
$$

## Proof 2

induction on $n>0$

- $\mathrm{e}_{1}(x+1)=(x+1)^{2}+2>x^{2}+2=\mathrm{e}_{1}(x)$
$-\mathrm{e}_{n+1}(x+1)=\mathrm{e}_{n}\left(\mathrm{e}_{n+1}(x)\right)>\mathrm{e}_{n+1}(x)$ by


## Proof

homework exercise

## Lemma

$\forall f: \mathbb{N}^{m} \rightarrow \mathbb{N} \in \mathrm{E}_{n+2} \quad \exists k \in \mathbb{N} \quad$ such that $\quad f\left(x_{1}, \ldots, x_{m}\right) \leqslant \mathrm{e}_{n+1}^{(k)}\left(\max \left\{x_{1}, \ldots, x_{m}\right\}\right)$

## Proof

- $z(x)=0 \leqslant x=e_{n+1}^{(0)}(x)$
- $\mathrm{s}(x)=x+1 \leqslant x^{2}+2=\mathrm{e}_{1}(x) \leqslant \mathrm{e}_{n+1}^{(1)}(x)$
- $\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i}<\mathrm{e}_{1}\left(x_{i}\right) \leqslant \mathrm{e}_{1}(\max \{\vec{x}\}) \leqslant \mathrm{e}_{n+1}^{(1)}(\max \{\vec{x}\})$
- $\mathrm{e}_{0}(x, y)=x+y \leqslant 2 \times \max \{x, y\} \leqslant(\max \{x, y\})^{2}+2=\mathrm{e}_{1}(\max \{x, y\}) \leqslant \mathrm{e}_{n+1}^{(1)}(\max \{x, y\})$
- $\mathrm{e}_{n+1}(x) \leqslant \mathrm{e}_{n+1}^{(1)}(x)$


## Lemma

$\forall f: \mathbb{N}^{m} \rightarrow \mathbb{N} \in \mathrm{E}_{n+2} \quad \exists k \in \mathbb{N} \quad$ such that $\quad f\left(x_{1}, \ldots, x_{m}\right) \leqslant \mathrm{e}_{n+1}^{(k)}\left(\max \left\{x_{1}, \ldots, x_{m}\right\}\right)$

## Proof (cont'd)

- $f$ is obtained by composing $g$ and $h_{1}, \ldots, h_{j}$

$$
\begin{array}{rlr}
f(\vec{x}) & =g\left(h_{1}(\vec{x}), \ldots, h_{j}(\vec{x})\right) \leqslant \mathrm{e}_{n+1}^{(k)}\left(\max \left\{h_{1}(\vec{x}), \ldots, h_{j}(\vec{x})\right\}\right) \quad g \in \mathrm{E}_{n+2} \\
& \leqslant \mathrm{e}_{n+1}^{(k)}\left(\mathrm{e}_{n+1}^{(\ell)}(\max \{\vec{x}\})\right)=\mathrm{e}_{n+1}^{(k+\ell)}(\max \{\vec{x}\}) \\
h_{i}(\vec{x}) & \leqslant \mathrm{e}_{n+1}^{\left(k_{i}\right)}(\max \{\vec{x}\}) \leqslant \mathrm{e}_{n+1}^{(\ell)}(\max \{\vec{x}\}) \quad h_{1}, \ldots, h_{j} \in \mathrm{E}_{n+2}
\end{array}
$$

$$
\ell=\max \left\{k_{1}, \ldots, k_{j}\right\}
$$

- $f$ is obtained by bounded recursion from $g$ and $h$ with bound $i$

$$
f(\vec{x}) \leqslant i(\vec{x}) \leqslant e_{n+1}^{(k)}(\max \{\vec{x}\})
$$

$$
i \in \mathrm{E}_{n+2}
$$

## Lemma

$\forall f: \mathbb{N}^{m} \rightarrow \mathbb{N} \in \mathrm{E}_{n+2} \quad \exists k \in \mathbb{N} \quad$ such that $\quad f\left(x_{1}, \ldots, x_{m}\right) \leqslant e_{n+1}^{(k)}\left(\max \left\{x_{1}, \ldots, x_{m}\right\}\right)$

## Corollary

$\forall f: \mathbb{N} \rightarrow \mathbb{N} \in \mathrm{E}_{n+2} \quad \exists k \in \mathbb{N}$ such that $f(x) \leqslant \mathrm{e}_{n+2}(k+x)$

## Proof

$f(x) \leqslant \mathrm{e}_{n+1}^{(k)}(x) \leqslant \mathrm{e}_{n+2}(k+x)$

## Lemma

$\mathrm{e}_{n} \in \mathrm{E}_{n+1} \backslash \mathrm{E}_{n}$

## Proof

$\mathrm{e}_{n} \notin \mathrm{E}_{n}$ by case analysis on $n$

- $\mathrm{e}_{0}(x, y)=x+y \quad \Longrightarrow \quad \neg \exists c \in \mathbb{N}$ with $x+y \leqslant \max \{x, y\}+c$
- $\mathrm{e}_{1}(x)=x^{2}+2 \quad \Longrightarrow \quad \neg \exists a, b \in \mathbb{N}$ with $x^{2}+2 \leqslant a x+b$
- $\mathrm{e}_{n+2} \in \mathrm{E}_{n+2} \quad \Longrightarrow \mathrm{e}_{n+2}\left(\mathrm{e}_{0}(x, x)\right) \in \mathrm{E}_{n+2}$ and thus

$$
\mathrm{e}_{n+2}(x+x) \leqslant \mathrm{e}_{n+2}(k+x)
$$

for some $k \in \mathbb{N}$

## Theorem (Grzegorczyk Hierarchy)

(1) $\mathrm{E}_{0} \subsetneq \mathrm{E}_{1} \subsetneq \mathrm{E}_{2} \subsetneq \cdots$
(2) $\mathrm{E}_{3}=\mathrm{E}$
(3) $\bigcup_{n \geqslant 0} E_{n}=P R$

## Proof

(1) $\mathrm{E}_{0} \subseteq \mathrm{E}_{1} \subseteq \mathrm{E}_{2}$ by definition
$\mathrm{E}_{n+2} \subseteq \mathrm{E}_{n+3}$ for $n \geqslant 0$ because $\mathrm{e}_{n+1} \in \mathrm{E}_{n+3}$ by bounded recursion:

$$
\mathrm{e}_{n+1}(x) \leqslant \mathrm{e}_{n+2}(x) \in \mathrm{E}_{n+3}
$$

## Outline

```
1. Summary of Previous Lecture
2. Loop Programs
3. Elementary Functions
4. Grzegorczyk Hierarchy
```


## 5. Summary

## Important Concepts

- $2_{x}(y)$
- bounded recursion
- $e_{0}, e_{1}, e_{2}, \ldots$
- $E_{0}, E_{1}, E_{2}, \ldots$
- elementary function
- Grzegorczyk hierarchy
- LOOP computable
- LOOP program
homework for October 23

