

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Definitions

- $\langle x_1, \ldots, x_n \rangle = p_0^n \times p_1^{x_1} \times \cdots \times p_n^{x_n}$ Gödel number
- $(x)_i = (\mu j < x) \neg (p_i^{j+1} \mid x)$
- ▶ $len(x) = (x)_0$
- ▶ seq(x) \iff $x > 0 \land (\forall i \leqslant x) [(x)_i \neq 0 \implies i \leqslant len(x)]$
- ▶ $x ; y = p_0^{\text{len}(x) + \text{len}(y)} \times \prod_{i < \text{len}(x)} p_{i+1}^{(x)_{i+1}} \times \prod_{i < \text{len}(x) + i + 1} p_{\text{len}(x) + i + 1}^{(y)_{i+1}}$

Lemma

PR is closed under course-of-values recursion:

if $g: \mathbb{N}^n \to \mathbb{N}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N}$ are primitive recursive then

$$f(0,\vec{y}) = g(\vec{y})$$
 $f(x+1,\vec{y}) = h(\tilde{f}(x,\vec{y}),x,\vec{y})$

with $\tilde{f}(x, \vec{y}) = \langle f(0, \vec{y}), \dots, f(x, \vec{y}) \rangle$ is primitive recursive

Definition (Ackermann function)

$$ack(0,y) = y + 1$$

 $ack(x + 1, 0) = ack(x, 1)$
 $ack(x + 1, y + 1) = ack(x, ack(x + 1, y))$

Lemma

primitive recursive function $f: \mathbb{N}^n \to \mathbb{N} \ \exists \ \text{constant} \ \boldsymbol{c} \in \mathbb{N} \ \text{ such that}$ $f(x_1,\ldots,x_n)<\operatorname{ack}(\boldsymbol{c},\max\{x_1,\ldots,x_n\})$

Theorem

Ackermann function is **not** primitive recursive

Definition

class R of recursive functions is smallest class of total functions that contains all initial functions and is closed under composition, primitive recursion and (unbounded) minimization:

$$(\mu i) P(i, \vec{y}) = \min \{i \mid P(i, \vec{y})\} \in R$$

for all $P: \mathbb{N}^{n+1} \to \mathbb{B}$ such that $\chi_P \in \mathbb{R}$ and $\forall \vec{y} \exists x P(x, \vec{y})$

Theorem

ightharpoonup \exists primitive recursive predicate $P \colon \mathbb{N} \to \mathbb{B}$ such that

$$ightharpoonup$$
 ack $(x,y)=z\iff\exists t \text{ such that } P(t) \text{ and } (t)_1=\langle x,y,z\rangle$

- ▶ $ack(x,y) = ((\mu t) (P(t) \land (t)_{1,1} = x \land (t)_{1,2} = y))_{1,3}$
- Ackermann function is recursive

 $P(x) \iff x$ encodes correct Ackermann computation tree

Definition

index $\lceil f \rceil \in \mathbb{N}$ of derivation of primitive recursive function f is defined inductively:

- ightharpoonup $\lceil z \rceil = \langle 0 \rangle$
- ightharpoonup $\lceil \mathsf{s} \rceil = \langle \mathsf{1} \rangle$
- $\blacktriangleright \ \lceil \pi_i^{n} \rceil = \langle 2, n, i \rangle$
- ▶ $\lceil f \rceil = \langle 3, \lceil g \rceil, \lceil h_1 \rceil, \dots, \lceil h_m \rceil \rangle$ if f is obtained by composing g and h_1, \dots, h_m
- $ightharpoonup \lceil f \rceil = \langle 4, \lceil g \rceil, \lceil h \rceil \rangle$ if f is obtained by primitive recursion from g and h

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 $\alpha-$ equivalence, abstraction, arithmetization, $\beta-$ reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, $\eta-$ reduction, fixed point theorem, intuitionistic propositional logic, $\lambda-$ definability, normalization theorem, termination, typing, undecidability, Z property, . . .

Outline

1. Summary of Previous Lecture

2. Loop Programs

- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Loop Programs

simple programming language

- natural numbers are only data type
- ightharpoonup variables x, y, z, ...
- ▶ commands
 - ▶ assignment x := 0 x := y
 - ▶ increment x++
 - ► composition P; Q
 - ► loop
 - ► LOOP x DO P OD

execute P exactly n times, where n is value of x before entering loop

Examples

```
program P:

z := x;

LOOP y DO

z++

OD
```

computes addition: z = x + y

notation: P(x, y; z)

```
multiplication (x, y; z):

z := 0;

LOOP x DO

LOOP y DO

z++

OD

OD
```

Examples

```
program P(x; y):
                                           program Q(x; y):
   y := 0;
                                              y := 0;
   z := 0;
                                              z := 0:
   LOOP x DO
                                              z++;
                                               LOOP x DO
      y := z;
       z++
                                                  y := z
   OD
                                               OD
computes predecessor: y = p(x)
                                           computes sign function: y = sg(x)
```

LOOP programs terminate

Definition

function $f: \mathbb{N}^n \to \mathbb{N}$ is LOOP computable if \exists LOOP program $P(x_1, \dots, x_n; y)$ such that

$$y = f(x_1, \ldots, x_n)$$

after execution of P

Theorem

primitive recursive functions are LOOP computable

Proof

$$y = z(x)$$

$$y := 0$$

$$y = s(x)$$

$$y := x; y++$$

$$y = \pi_i^n(x_1, \dots, x_n) \qquad y := x_i$$

$$y = g(h_1(x_1, \ldots, x_m), \ldots, h_n(x_1, \ldots, x_m))$$

$$P_{h_1}(x_1,\ldots,x_m;y_1);\ldots;P_{h_n}(x_1,\ldots,x_m;y_n);P_{g_1}(y_1,\ldots,y_n;y)$$

primitive recursion

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(0,y) = g(y)$$

$$f(x+1,\vec{y}) = h(f(x,\vec{y}),x,\vec{y})$$

$$P_g(y_1, \dots, y_n; z);$$

 $v := 0;$
LOOP x DO

$$\vec{y}$$
), x , \vec{y})

$$P_h(z, v, y_1, \ldots, y_n; w);$$

$$z := w;$$

$$\angle := w;$$

 $v++$

Theorem

LOOP computable functions are primitive recursive

Proof

- ▶ LOOP program P with variables $x_1, ..., x_n$
- ▶ claim: \exists primitive recursive functions $f_1, \ldots, f_n : \mathbb{N}^n \to \mathbb{N}$ such that if x_1, \ldots, x_n have values a_1, \ldots, a_n before execution of P then x_i has value $f_i(a_1, \ldots, a_n)$ after execution of P, for all $1 \le i \le n$
- claim is proved by induction on structure of P (details left as exercise)

Example

 $f_P(x,y) = f_3(x,y,0,0,0)$ for LOOP program P with input variables x_1 and x_2 , output variable x_3 , and auxiliary variables x_4 and x_5

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

lecture 3

Definition

class $\mathbf E$ of elementary functions is smallest class of (total) functions $f \colon \mathbb N^n \to \mathbb N$ that contains all initial functions, +, $\dot{-}$ and is closed under composition, bounded summation and bounded product

Examples

$$x \times y$$
, x^y and $x!$ are elementary functions:

$$x! = \prod_{i < x} i + 1 = \prod_{i < x} s(i)$$

E is closed under bounded minimization

Proof

- ▶ consider $f(x, \vec{y}) = (\mu i \leq x) (g(i, \vec{y}) = 0)$ with $g \in E$
- ▶ elementary function

$$f'(x, \vec{y}) = \sum_{i \leq x} 1 - g(i, \vec{y})$$

counts how many values $i \in \{0, ..., x\}$ satisfy $g(i, \vec{y}) = 0$

• $f(x, \vec{y}) = \sum 1 - f'(i, \vec{y})$ is elementary

elementary functions are primitive recursive

Definition

binary function $2_{x}(y)$ is defined by primitive recursion

$$2_0(v) = v$$

 $2_{x+1}(y) = 2^{2_x(y)}$

Example

 $2_0(3) = 3$ $2_1(3) = 2^3 = 8$ $2_2(3) = 2^8 = 256$

Lemma

 \forall elementary function $f: \mathbb{N}^n \to \mathbb{N} \ \exists$ constant $\mathbf{c} \in \mathbb{N}$ such that $f(x_1, \ldots, x_n) < 2_c(\max\{x_1, \ldots, x_n\})$

WS 2023

Proof

induction on definition of elementary functions

initial functions

$$z(x) = 0 < 2^{x} = 2_{1}(x)$$

 $s(x) = x + 1 < 2^{2^{x}} = 2_{2}(x)$
 $\pi_{i}^{n}(x_{1},...,x_{n}) = x_{i} \leq \max\{x_{1},...,x_{n}\} < 2_{1}(\max\{x_{1},...,x_{n}\})$

- ▶ + and $\dot{-}$ $x \dot{-} y \leqslant x + y \leqslant 2 \times \max\{x,y\} < 2_2(\max\{x,y\})$
- ► composition $f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x}))$

$$g(\vec{y}) < 2_{c}(\max{\{\vec{y}\}})$$
 $h_{i}(\vec{x}) < 2_{c_{i}}(\max{\{\vec{x}\}})$ for all $1 \leqslant i \leqslant m$

$$f(\vec{x}) < 2_c(\max\{h_1(\vec{x}), \dots, h_m(\vec{x})\}) < 2_c(\max\{2_{c_1}(\max\{\vec{x}\}), \dots, 2_{c_m}(\max\{\vec{x}\})\})$$

$$= 2_c(2_{\max\{c_1, \dots, c_m\}}(\max\{\vec{x}\})) = 2_{c+\max\{c_1, \dots, c_m\}}(\max\{\vec{x}\})$$

Proof (cont'd)

induction on definition of elementary functions

▶ bounded summation $f(x, \vec{y}) = \sum_{i=1}^{n} g(i, \vec{y})$ with $g(i, \vec{y}) < 2_c(\max\{i, \vec{y}\})$

$$f(x, \vec{y}) < (x+1) \times 2_c(\max\{x, \vec{y}\}) \leqslant 2_c(\max\{x, \vec{y}\}) \times 2_c(\max\{x, \vec{y}\}) \leqslant 2_{c+3}(\max\{x, \vec{y}\})$$

Lemma

$$x^y \leqslant 2_3(\max\{x,y\})$$

Proof

 $x^y \le 2^{xy} \le 2^{2^{x+y}} \le 2^{2^{2^{\max\{x,y\}}}} = 2_3(\max\{x,y\})$

Proof (cont'd)

induction on definition of elementary functions

▶ bounded product $f(x, \vec{y}) = \prod g(i, \vec{y})$ with $g(i, \vec{y}) < 2_c(\max\{i, \vec{y}\})$

$$\begin{split} f(x,\vec{y}) &< 2_c (\max\{x,\vec{y}\})^{x+1} \leqslant 2_c (\max\{x,\vec{y}\})^{2_1 (\max\{x,\vec{y}\})} \\ &\leqslant 2_3 (\max\{2_c (\max\{x,\vec{y}\}),2_1 (\max\{x,\vec{y}\})\}) = 2_3 (2_{\max\{c,1\}} (\max\{x,\vec{y}\})) \\ &= 2_{3+\max\{c,1\}} (\max\{x,\vec{y}\}) \end{split}$$

Corollary

 $E \subseteq PR$

Proof

if primitive recursive function $2_x(y)$ is elementary then $2_x(y) < 2_c(\max\{x,y\})$ for some constant c and thus $2_c(c) < 2_c(\max\{c,c\}) = 2_c(c)$

WS 2023

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Definition (bounded recursion)

class C of numeric functions is closed under bounded recursion if $f: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by primitive recursion from $g: \mathbb{N}^n \to \mathbb{N} \in \mathbb{C}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N} \in \mathbb{C}$ and satisfying

$$f(x,\vec{y}) \leqslant i(x,\vec{y})$$

for some $i: \mathbb{N}^{n+1} \to \mathbb{N} \in \mathbb{C}$ different from f belongs to \mathbb{C}

Definitions

- $e_0(x, y) = x + y$ $e_1(x) = x^2 + 2$
- $e_{n+2}(x) = \begin{cases} 2 & \text{if } x = 0 \\ e_{n+1}(e_{n+2}(x-1)) & \text{if } x > 0 \end{cases}$

Example

 $e_2(0) = 2$ $e_2(1) = 6$ $e_2(3) = e_1(e_2(2)) = e_1(38) = 1446$

Definition

 $e_{n+2}(x) = \begin{cases} 2 & \text{if } x = 0 \\ e_{n+1}(e_{n+2}(x-1)) & \text{if } x > 0 \end{cases}$

$$f^{(x)}(y) = \begin{cases} y & \text{if } x = 0 \\ f(f^{(x-1)}(y)) & \text{if } x > 0 \end{cases}$$

Lemma

 $e_{n+2}(x) = e_{n+1}^{(x)}(2)$

Proof

induction on *x*

•
$$e_{n+2}(0) = 2 = e_{n+1}^{(0)}(2)$$

$$e_{n+2}(x+1) = e_{n+1}(e_{n+2}(x)) = e_{n+1}(e_{n+1}^{(x)}(2)) = e_{n+1}^{(x+1)}(2)$$

Definitions

- ► E₀ is smallest class of functions that contains all initial functions and is closed under composition and bounded recursion
- ▶ E_{n+1} is smallest class of functions that contains all initial functions, e_0 , e_n and is closed under composition and bounded recursion

Examples

- ightharpoonup E₀ contains f(x) = x + 2
- ightharpoonup E₁ contains f(x) = 4x
- \triangleright E₂ contains $f(x) = x^4$
- \triangleright E₃ contains $f(x) = 2^{2^x}$

$$\forall f : \mathbb{N}^n \to \mathbb{N} \in \mathsf{E_0} \ \exists c \in \mathbb{N} \ \text{such that} \ f(x_1, \dots, x_n) \leqslant \max\{x_1, \dots, x_n\} + c$$

Proof

- $ightharpoonup z(x) \leqslant x$
- $ightharpoonup s(x) \leqslant x+1$
- \bullet $\pi_i^n(x_1,\ldots,x_n) \leqslant x_i \leqslant \max\{x_1,\ldots,x_n\}$
- f is obtained by composing g and h_1, \ldots, h_m

$$f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x})) \leqslant \max\{h_1(\vec{x}), \dots, h_m(\vec{x})\} + c_g \qquad g \in E_0$$

 $\leqslant \max\{\vec{x}\} + \max\{c_{h_1}, \dots, c_{h_m}\} + c_g \qquad h_1, \dots, h_m \in E_0$

is obtained by bounded recursion from q and h with bound i

WS 2023

 $f(\vec{x}) \leq i(\vec{x}) \leq \max\{x_1, \dots, x_n\} + c_i$

 $i \in E_0$

$$\forall f \colon \mathbb{N}^n \to \mathbb{N} \in \mathsf{E_1} \quad \exists \text{ linear function } g \colon \mathbb{N}^n \to \mathbb{N} \quad \text{ such that } \quad f(x_1, \dots, x_n) \leqslant g(x_1, \dots, x_n)$$

Proof

- **.** . . .
- $f = e_0 = x + v$
- f is obtained by composing g and h_1, \ldots, h_m

$$f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x})) \leq \ell_g(h_1(\vec{x}), \dots, h_m(\vec{x})) \qquad g \in E_1$$

$$\leq \ell_g(\ell_{h_1}(\vec{x}), \dots, \ell_{h_m}(\vec{x})) \qquad h_1, \dots, h_m \in E_1$$

linear functions are closed under composition

Lemma 1 $e_n(x) > x$

 $e_n(x+1) > e_n(x)$ $e_{n+1}(x) \ge e_n(x)$

Proof 1

universität innsbruck

4 $e_{n+1}(x+k) \ge e_n^{(k)}(x)$

 \bullet $e_{n+1}(x+1) = e_n(e_{n+1}(x)) > e_{n+1}(x) > x \implies e_{n+1}(x+1) > x+1$

▶ induction on $x \ge 0$

induction on n > 0 \bullet e₁(x) = x² + 2 > x

ightharpoonup $e_{n+1}(0) = 2 > 0$

WS 2023

Computability Theory

- lecture 3
 - - 4. Grzegorczyk Hierarchy

 $\forall n \geq 1 \ \forall x \geq 0$

 $\forall n \geq 1 \ \forall x \geq 0$

 $\forall n \geq 1 \ \forall x \geq 0$

 $\forall n \geqslant 1 \ \forall x \geqslant 0 \ \forall k \geqslant 0$

4 $e_{n+1}(x+k) \ge e_n^{(k)}(x)$

 $\mathbf{0}$ $e_n(x) > x$

 $e_n(x+1) > e_n(x)$

3 $e_{n+1}(x) \ge e_n(x)$

- Proof 2
- induction on n > 0
- $e_1(x+1) = (x+1)^2 + 2 > x^2 + 2 = e_1(x)$
- \bullet $e_{n+1}(x+1) = e_n(e_{n+1}(x)) > e_{n+1}(x)$ by \bullet
- **Proof**

homework exercise

 $\forall n \geq 1 \ \forall x \geq 0$

 $\forall n \geq 1 \ \forall x \geq 0$

 $\forall n \geq 1 \ \forall x \geq 0$

29/36

 $\forall n \geqslant 1 \ \forall x \geqslant 0 \ \forall k \geqslant 0$

$$\forall f \colon \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant \mathbf{e}_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$$

Proof

- $ightharpoonup z(x) = 0 \leqslant x = e_{n+1}^{(0)}(x)$
- $ightharpoonup s(x) = x + 1 \le x^2 + 2 = e_1(x) \le e_{n+1}^{(1)}(x)$
- ► $\pi_i^n(x_1,...,x_n) = x_i < e_1(x_i) \leq e_1(\max\{\vec{x}\}) \leq e_{n+1}^{(1)}(\max\{\vec{x}\})$
- $e_0(x,y) = x + y \leqslant 2 \times \max\{x,y\} \leqslant (\max\{x,y\})^2 + 2 = e_1(\max\{x,y\}) \leqslant e_{n+1}^{(1)}(\max\{x,y\})$
- $e_{n+1}(x) \leq e_{n+1}^{(1)}(x)$

$$\forall f \colon \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant \mathbf{e}_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$$

Proof (cont'd)

▶ f is obtained by composing g and h_1, \ldots, h_i

$$f(\vec{x}) = g(h_1(\vec{x}), \dots, h_j(\vec{x})) \leqslant e_{n+1}^{(k)}(\max\{h_1(\vec{x}), \dots, h_j(\vec{x})\}) \qquad g \in E_{n+2}$$

$$\leqslant e_{n+1}^{(k)}(e_{n+1}^{(\ell)}(\max\{\vec{x}\})) = e_{n+1}^{(k+\ell)}(\max\{\vec{x}\})$$

$$h_i(\vec{x}) \leqslant e_{n+1}^{(k_i)}(\max\{\vec{x}\}) \leqslant e_{n+1}^{(\ell)}(\max\{\vec{x}\}) \qquad h_1, \dots, h_i \in E_{n+2}$$

$$\ell = \max\{k_1, \dots, k_j\}$$

▶ f is obtained by bounded recursion from g and h with bound i

$$f(\vec{x}) \leqslant i(\vec{x}) \leqslant e_{n+1}^{(k)}(\max{\{\vec{x}\}})$$

 $i \in E_{n+2}$

 $\forall f \colon \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant \mathbf{e}_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$

Corollary

 $\forall f : \mathbb{N} \to \mathbb{N} \in \mathsf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x) \leqslant \mathsf{e}_{n+2}(k+x)$

Proof

 $f(x) \leq e_{n+1}^{(k)}(x) \leq e_{n+2}(k+x)$

WS 2023

$$e_n \in E_{n+1} \setminus E_n$$

Proof

$$e_n \notin E_n$$
 by case analysis on n

$$ightharpoonup$$
 $e_0(x,y) = x + y \implies \neg \exists c \in \mathbb{N} \text{ with } x + y \leqslant \max\{x,y\} + c$

$$ightharpoonup$$
 $e_1(x) = x^2 + 2 \implies \neg \exists a, b \in \mathbb{N} \text{ with } x^2 + 2 \leqslant ax + b$

$$ightharpoonup$$
 $e_{n+2} \in E_{n+2}$ \Longrightarrow $e_{n+2}(e_0(x,x)) \in E_{n+2}$ and thus

$$e_{n+2}(x+x) \leqslant e_{n+2}(k+x)$$

for some $k \in \mathbb{N}$

Theorem (Grzegorczyk Hierarchy)

- ${\bf e}_3 = {\bf E}_3$
- $\bigcup_{n \geq 0} \mathsf{E}_n = \mathsf{PR}$

Proof

 \bigcirc $E_0 \subseteq E_1 \subseteq E_2$ by definition

 $\mathsf{E}_{n+2}\subseteq\mathsf{E}_{n+3}$ for $n\geqslant 0$ because $\mathsf{e}_{n+1}\in\mathsf{E}_{n+3}$ by bounded recursion:

$$e_{n+1}(x) \leqslant e_{n+2}(x) \in E_{n+3}$$

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Important Concepts

- \triangleright 2_x(y)
- bounded recursion
- ► e₀, e₁, e₂, . . .

- \triangleright E₀, E₁, E₂, ...
- elementary function
- Grzegorczyk hierarchy

5. Summary

- ► LOOP computable
- ► LOOP program

homework for October 23

