

Computability Theory

Aart Middeldorp

Definitions

- $ightharpoonup \langle x_1, \dots, x_n \rangle = \mathsf{p}_0^n \times \mathsf{p}_1^{x_1} \times \dots \times \mathsf{p}_n^{x_n}$ Gödel number
- $(x)_i = (\mu j < x) \neg (p_i^{j+1} | x)$
- ▶ $len(x) = (x)_0$
- ▶ seq(x) \iff $x > 0 \land (\forall i \leqslant x) [(x)_i \neq 0 \implies i \leqslant len(x)]$
- ► x; $y = p_0^{\text{len}(x) + \text{len}(y)} \times \prod_{i < \text{len}(x)} p_{i+1}^{(x)_{i+1}} \times \prod_{i < \text{len}(x) + i + 1} p_{\text{len}(x) + i + 1}^{(y)_{i+1}}$

Lemma

PR is closed under course-of-values recursion:

if $g: \mathbb{N}^n \to \mathbb{N}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N}$ are primitive recursive then

$$f(0,\vec{y})=g(\vec{y})$$

$$f(0, \vec{y}) = g(\vec{y})$$
 $f(x+1, \vec{y}) = h(\tilde{f}(x, \vec{y}), x, \vec{y})$

with $\tilde{f}(x, \vec{y}) = \langle f(0, \vec{y}), \dots, f(x, \vec{y}) \rangle$ is primitive recursive

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Definition (Ackermann function)

$$ack(0,y) = y + 1$$

 $ack(x + 1,0) = ack(x,1)$
 $ack(x + 1,y + 1) = ack(x,ack(x + 1,y))$

Lemma

 \forall primitive recursive function $f: \mathbb{N}^n \to \mathbb{N} \ \exists$ constant $\mathbf{c} \in \mathbb{N}$ such that $f(x_1,\ldots,x_n)<\operatorname{ack}(\mathbf{c},\max\{x_1,\ldots,x_n\})$

Theorem

Ackermann function is **not** primitive recursive

Definition

class R of recursive functions is smallest class of total functions that contains all initial functions and is closed under composition, primitive recursion and (unbounded) minimization:

$$(\mu i) P(i, \vec{y}) = \min\{i \mid P(i, \vec{y})\} \in R$$

for all $P: \mathbb{N}^{n+1} \to \mathbb{B}$ such that $\chi_P \in \mathbb{R}$ and $\forall \vec{y} \exists x P(x, \vec{y})$

Theorem

ightharpoonup \exists primitive recursive predicate $P: \mathbb{N} \to \mathbb{B}$ such that

 $P(x) \iff x \text{ encodes correct Ackermann computation tree}$

- ▶ ack $(x,y) = z \iff \exists t \text{ such that } P(t) \text{ and } (t)_1 = \langle x,y,z \rangle$
- $ack(x,y) = ((\mu t) (P(t) \wedge (t)_{1,1} = x \wedge (t)_{1,2} = y))_{1,3}$
- Ackermann function is recursive

WS 2023 Computability Theory lecture 3

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness. Church numerals. Church-Rosser theorem. Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Definition

index $\lceil f \rceil \in \mathbb{N}$ of derivation of primitive recursive function f is defined inductively:

- ► \[\z^\ = \langle 0 \rangle
- ▶ 「s¬ = ⟨1⟩
- $ightharpoonup \lceil \pi_i^{n \rceil} = \langle 2, n, i \rangle$
- $ightharpoonup \lceil f \rceil = \langle 3, \lceil g \rceil, \lceil h_1 \rceil, \dots, \lceil h_m \rceil \rangle$ if f is obtained by composing g and h_1, \dots, h_m
- $ightharpoonup \lceil f \rceil = \langle 4, \lceil g \rceil, \lceil h \rceil \rangle$ if f is obtained by primitive recursion from g and h

WS 2023 Computability Theory lecture 3

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Loop Programs

simple programming language

- ► natural numbers are only data type
- ▶ variables x, y, z, ...
- ▶ commands

```
assignment
            x := 0
                   x := y
```

- ▶ increment X++
- composition P; Q
- ► loop
 - ▶ LOOP x DO P OD

execute P exactly n times, where n is value of x before entering loop

Examples

```
multiplication (x, y; z):
program P:
   z := x;
                                                  z := 0;
```

LOOP y DO LOOP x DO LOOP y DO z++OD Z++

OD computes addition: z = x + yOD

notation: P(x, y; z)

WS 2023 Computability Theory lecture 3

WS 2023 Computability Theory lecture 3 2. Loop Programs

```
program P(x; y):
                                         program Q(x; y):
   y := 0;
                                            y := 0;
   z := 0;
                                            z := 0;
   LOOP x DO
                                            Z++;
                                            LOOP x DO
      y := z;
       Z++
                                                y := z
                                            OD
   OD
computes predecessor: y = p(x)
                                         computes sign function: y = sg(x)
```

Lemma

LOOP programs terminate

Definition

function $f: \mathbb{N}^n \to \mathbb{N}$ is LOOP computable if \exists LOOP program $P(x_1, \dots, x_n; y)$ such that

$$y = f(x_1, \ldots, x_n)$$

after execution of P

Theorem

primitive recursive functions are LOOP computable

Proof

y = z(x)v := 0zero

y = s(x)successor y := x; y++

 $y = \pi_i^n(x_1, \dots, x_n)$ $y := x_i$ projection

 $y = g(h_1(x_1, ..., x_m), ..., h_n(x_1, ..., x_m))$ composition

 $P_{h_1}(x_1, \ldots, x_m; y_1); \ldots; P_{h_n}(x_1, \ldots, x_m; y_n); P_{g}(y_1, \ldots, y_n; y)$

primitive recursion

$$f(0,\vec{y}) = g(\vec{y})$$

$$f(x+1,\vec{y}) = h(f(x,\vec{y}),x,\vec{y})$$

$$v := 0;$$

$$LOOP \times DO$$

$$P_h(z,v,y_1,\ldots,y_n;w);$$

$$z := w;$$

$$v++$$
OD

WS 2023 Computability Theory lecture 3

Theorem

LOOP computable functions are primitive recursive

Proof

- ▶ LOOP program P with variables $x_1, ..., x_n$
- ▶ claim: \exists primitive recursive functions $f_1, \ldots, f_n : \mathbb{N}^n \to \mathbb{N}$ such that if x_1, \ldots, x_n have values a_1, \ldots, a_n before execution of P then x_i has value $f_i(a_1, \ldots, a_n)$ after execution of P, for all $1 \le i \le n$
- ► claim is proved by induction on structure of *P* (details left as exercise)

Example

13/36

 $f_P(x,y) = f_3(x,y,0,0,0)$ for LOOP program P with input variables x_1 and x_2 , output variable x_3 , and auxiliary variables x_4 and x_5

WS 2023 Computability Theory lecture 3

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Definition

class **E** of elementary functions is smallest class of (total) functions $f: \mathbb{N}^n \to \mathbb{N}$ that contains all initial functions, +, $\dot{-}$ and is closed under composition, bounded summation and bounded product

Examples

 $x \times y$, x^y and x! are elementary functions:

 $P_a(y_1,\ldots,y_n;z);$

Lemma

E is closed under bounded minimization

Proof

- ▶ consider $f(x, \vec{y}) = (\mu i \leqslant x) (g(i, \vec{y}) = 0)$ with $g \in E$
- ▶ elementary function

$$f'(x,\vec{y}) = \sum_{i \leqslant x} 1 - g(i,\vec{y})$$

counts how many values $i \in \{0, ..., x\}$ satisfy $g(i, \vec{y}) = 0$

• $f(x, \vec{y}) = \sum_{i \leqslant x} 1 - f'(i, \vec{y})$ is elementary

WS 2023 Computability Theory lecture 3

Lemma

elementary functions are primitive recursive

Definition

binary function $2_x(y)$ is defined by primitive recursion

$$2_0(y)=y$$

$$2_{x+1}(y) = 2^{2_x(y)}$$

Example

$$2_0(3) =$$

$$2_1(3) = 2^3$$

$$2_0(3) = 3$$
 $2_1(3) = 2^3 = 8$ $2_2(3) = 2^8 = 256$

 \forall elementary function $f: \mathbb{N}^n \to \mathbb{N} \ \exists$ constant $\mathbf{c} \in \mathbb{N}$ such that

$$f(x_1,\ldots,x_n)<2_{\mathbf{c}}(\max\{x_1,\ldots,x_n\})$$

Proof

induction on definition of elementary functions

initial functions

$$z(x) = 0 < 2^x = 2_1(x)$$

$$s(x) = x + 1 < 2^{2^x} = 2_2(x)$$

$$\pi_i^n(x_1,...,x_n) = x_i \leqslant \max\{x_1,...,x_n\} < 2_1(\max\{x_1,...,x_n\})$$

- ► + and $\dot{-}$ $x \dot{-} y \leqslant x + y \leqslant 2 \times \max\{x,y\} < 2_2(\max\{x,y\})$
- ► composition $f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x}))$

$$g(\vec{y}) < 2_{c}(\max{\{\vec{y}\}})$$
 $h_{i}(\vec{x}) < 2_{c}(\max{\{\vec{x}\}})$ for all $1 \le i \le m$

$$f(\vec{x}) < 2_{c}(\max\{h_{1}(\vec{x}), \dots, h_{m}(\vec{x})\}) < 2_{c}(\max\{2_{c_{1}}(\max\{\vec{x}\}), \dots, 2_{c_{m}}(\max\{\vec{x}\})\})$$

$$= 2_{c}(2_{\max\{c_{1}, \dots, c_{m}\}}(\max\{\vec{x}\})) = 2_{c+\max\{c_{1}, \dots, c_{m}\}}(\max\{\vec{x}\})$$

Proof (cont'd)

induction on definition of elementary functions

▶ bounded summation $f(x, \vec{y}) = \sum_{i=0}^{\infty} g(i, \vec{y})$ with $g(i, \vec{y}) < 2_c (\max\{i, \vec{y}\})$

$$f(x,\vec{y}) < (x+1) \times 2_c(\max\{x,\vec{y}\}) \leqslant 2_2(\max\{x,\vec{y}\}) \times 2_c(\max\{x,\vec{y}\}) \leqslant 2_{c+3}(\max\{x,\vec{y}\})$$

Lemma

$$x^y \leqslant 2_3(\max\{x,y\})$$

Proof

$$x^{y} \leqslant 2^{xy} \leqslant 2^{2^{x+y}} \leqslant 2^{2^{2^{\max\{x,y\}}}} = 2_{3}(\max\{x,y\})$$

Proof (cont'd)

induction on definition of elementary functions

▶ bounded product
$$f(x, \vec{y}) = \prod_{i=0}^{n} g(i, \vec{y})$$
 with $g(i, \vec{y}) < 2_c(\max\{i, \vec{y}\})$

$$\begin{split} f(x,\vec{y}) &< 2_c (\max\{x,\vec{y}\})^{x+1} \leqslant 2_c (\max\{x,\vec{y}\})^{2_1 (\max\{x,\vec{y}\})} \\ &\leqslant 2_3 (\max\{2_c (\max\{x,\vec{y}\}),2_1 (\max\{x,\vec{y}\})\}) = 2_3 (2_{\max\{c,1\}} (\max\{x,\vec{y}\})) \\ &= 2_{3+\max\{c,1\}} (\max\{x,\vec{y}\}) \end{split}$$

Corollary

 $\mathsf{E} \subsetneq \mathsf{PR}$

Proof

if primitive recursive function $2_x(y)$ is elementary then $2_x(y) < 2_c(\max\{x,y\})$ for some constant c and thus $2_c(c) < 2_c(\max\{c,c\}) = 2_c(c)$

niversität ws 2023 Computability Theory Jecture 3 3 Flementa

3. Elementary Functions

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

universität WS 2023 Computability Theory lecture 3 4. **Grzegorczyk Hierarchy**

Definition (bounded recursion)

class C of numeric functions is closed under bounded recursion if $f: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by primitive recursion from $g: \mathbb{N}^n \to \mathbb{N} \in \mathbb{C}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N} \in \mathbb{C}$ and satisfying

$$f(x,\vec{y}) \leqslant i(x,\vec{y})$$

for some $i \colon \mathbb{N}^{n+1} \to \mathbb{N} \in C$ different from f belongs to C

Definitions

- $e_0(x,y) = x + y$ $e_1(x) = x^2 + 2$
- $\bullet \ e_{n+2}(x) = \begin{cases} 2 & \text{if } x = 0 \\ e_{n+1}(e_{n+2}(x-1)) & \text{if } x > 0 \end{cases}$

Example

$$e_2(0) = 2$$
 $e_2(1) = 6$ $e_2(3) = e_1(e_2(2)) = e_1(38) = 1446$

Definition

$$e_{n+2}(x) = \begin{cases} 2 & \text{if } x = 0 \\ e_{n+1}(e_{n+2}(x-1)) & \text{if } x > 0 \end{cases}$$

$$f^{(x)}(y) = \begin{cases} y & \text{if } x = 0\\ f(f^{(x-1)}(y)) & \text{if } x > 0 \end{cases}$$

Lemma

$$e_{n+2}(x) = e_{n+1}^{(x)}(2)$$

Proof

induction on x

$$ightharpoonup$$
 $e_{n+2}(0) = 2 = e_{n+1}^{(0)}(2)$

$$\bullet \ e_{n+2}(x+1) = e_{n+1}(e_{n+2}(x)) = e_{n+1}(e_{n+1}^{(x)}(2)) = e_{n+1}^{(x+1)}(2)$$

Definitions

- ▶ En is smallest class of functions that contains all initial functions and is closed under composition and bounded recursion
- \triangleright E_{n+1} is smallest class of functions that contains all initial functions, e_0 , e_n and is closed under composition and bounded recursion

Examples

- ightharpoonup E₀ contains f(x) = x + 2
- ightharpoonup E₁ contains f(x) = 4x
- \triangleright E₂ contains $f(x) = x^4$
- \triangleright E₃ contains $f(x) = 2^{2^x}$

WS 2023 Computability Theory lecture 3

4. Grzegorczyk Hierarchy

Lemma

 $\forall f \colon \mathbb{N}^n \to \mathbb{N} \in \mathsf{E}_0 \ \exists c \in \mathbb{N} \ \text{such that} \ f(x_1, \dots, x_n) \leqslant \max\{x_1, \dots, x_n\} + c$

Proof

- $ightharpoonup z(x) \leqslant x$
- ▶ $s(x) \leq x + 1$
- ▶ f is obtained by composing g and $h_1, ..., h_m$

$$f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x})) \leqslant \max\{h_1(\vec{x}), \dots, h_m(\vec{x})\} + c_g \qquad g \in E_0$$

$$\leqslant \max\{\vec{x}\} + \max\{c_{h_1}, \dots, c_{h_m}\} + c_g \qquad h_1, \dots, h_m \in E_0$$

▶ f is obtained by bounded recursion from g and h with bound i

$$f(\vec{x}) \leqslant i(\vec{x}) \leqslant \max\{x_1, \dots, x_n\} + c_i$$
 $i \in E_0$

Lemma

 $\forall f \colon \mathbb{N}^n \to \mathbb{N} \in \mathsf{E}_1 \ \exists \ \mathsf{linear} \ \mathsf{function} \ g \colon \mathbb{N}^n \to \mathbb{N} \ \mathsf{such that} \ f(x_1, \dots, x_n) \leqslant g(x_1, \dots, x_n)$

Proof

- **.** . . .
- ▶ $f = e_0 = x + y$
- f is obtained by composing g and h_1, \ldots, h_m

$$egin{aligned} f(ec{x}) &= g(h_1(ec{x}), \ldots, h_m(ec{x})) \leqslant \ell_g(h_1(ec{x}), \ldots, h_m(ec{x})) & g \in \mathsf{E}_1 \ &\leqslant \ell_g(\ell_{h_1}(ec{x}), \ldots, \ell_{h_m}(ec{x})) & h_1, \ldots, h_m \in \mathsf{E}_1 \end{aligned}$$

linear functions are closed under composition

Lemma

 $0 e_n(x) > x$

$$\forall n \geqslant 1 \ \forall x \geqslant 0$$

2 $e_n(x+1) > e_n(x)$

$$\forall n \geqslant 1 \ \forall x \geqslant 0$$

3 $e_{n+1}(x) \ge e_n(x)$

$$\forall n \geqslant 1 \ \forall x \geqslant 0$$

 $e_{n+1}(x+k) \ge e_n^{(k)}(x)$

 $\forall n \geqslant 1 \ \forall x \geqslant 0 \ \forall k \geqslant 0$

Proof 1

induction on n > 0

- \bullet e₁(x) = x² + 2 > x
- ▶ induction on $x \ge 0$
 - ightharpoonup $e_{n+1}(0) = 2 > 0$
- \bullet $e_{n+1}(x+1) = e_n(e_{n+1}(x)) > e_{n+1}(x) > x \implies e_{n+1}(x+1) > x+1$

Lemma

$$\bullet \ \, \mathsf{e}_n(x) > x \qquad \qquad \forall \, n \geqslant 1 \, \forall \, x \geqslant 0$$

$$\Theta \ e_{n+1}(x) \geqslant e_n(x)$$
 $\forall n \geqslant 1 \ \forall x \geqslant 0$

$$\bullet \ \mathsf{e}_{n+1}(x+k) \geqslant \mathsf{e}_n^{(k)}(x) \qquad \qquad \forall \, n \geqslant 1 \, \forall \, x \geqslant 0 \, \forall \, k \geqslant 0$$

Proof 2

induction on n > 0

- $e_1(x+1) = (x+1)^2 + 2 > x^2 + 2 = e_1(x)$
- $e_{n+1}(x+1) = e_n(e_{n+1}(x)) > e_{n+1}(x)$ by •

Proof 3 4

homework exercise

universitat WS 2023 Computability Theory lecture 3 4. **Grzegorczyk Hierarchy** 29/30

Lemma

 $\forall f : \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant \mathbf{e}_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$

Proof (cont'd)

• f is obtained by composing g and h_1, \ldots, h_i

$$f(\vec{x}) = g(h_1(\vec{x}), \dots, h_j(\vec{x})) \leqslant e_{n+1}^{(k)}(\max\{h_1(\vec{x}), \dots, h_j(\vec{x})\})$$

$$\leqslant e_{n+1}^{(k)}(e_{n+1}^{(\ell)}(\max\{\vec{x}\})) = e_{n+1}^{(k+\ell)}(\max\{\vec{x}\})$$

$$h_i(\vec{x}) \leqslant e_{n+1}^{(k_i)}(\max{\{\vec{x}\}}) \leqslant e_{n+1}^{(\ell)}(\max{\{\vec{x}\}})$$
 $h_1, \dots, h_j \in E_{n+2}$

 $\ell = \max\{k_1, \ldots, k_i\}$

lacksquare f is obtained by bounded recursion from g and h with bound i

$$f(\vec{x}) \leqslant i(\vec{x}) \leqslant e_{n+1}^{(k)}(\max{\{\vec{x}\}})$$
 $i \in E_{n+2}$

emma

 $\forall f \colon \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant \mathbf{e}_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$

Proof

- $z(x) = 0 \leqslant x = e_{n+1}^{(0)}(x)$
- $ightharpoonup s(x) = x + 1 \le x^2 + 2 = e_1(x) \le e_{n+1}^{(1)}(x)$
- $\pi_i^n(x_1,\ldots,x_n) = x_i < e_1(x_i) \leqslant e_1(\max\{\vec{x}\}) \leqslant e_{n+1}^{(1)}(\max\{\vec{x}\})$
- $e_0(x,y) = x + y \le 2 \times \max\{x,y\} \le (\max\{x,y\})^2 + 2 = e_1(\max\{x,y\}) \le e_{n+1}^{(1)}(\max\{x,y\})$
- $e_{n+1}(x) \leqslant e_{n+1}^{(1)}(x)$

universität WS 2023 Computability Theory lecture 3 4. Grzegorczyk Hierarchy

Lemma

 $\forall f : \mathbb{N}^m \to \mathbb{N} \in \mathbf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x_1, \dots, x_m) \leqslant e_{n+1}^{(k)}(\max\{x_1, \dots, x_m\})$

Corollary

 $\forall f : \mathbb{N} \to \mathbb{N} \in \mathsf{E}_{n+2} \quad \exists k \in \mathbb{N} \quad \text{such that} \quad f(x) \leqslant \mathsf{e}_{n+2}(k+x)$

Proo

 $f(x) \leqslant e_{n+1}^{(k)}(x) \leqslant e_{n+2}(k+x)$

Lemma

 $e_n \in E_{n+1} \setminus E_n$

Proof

 $e_n \notin E_n$ by case analysis on n

- $ightharpoonup e_0(x,y) = x + y \implies \neg \exists c \in \mathbb{N} \text{ with } x + y \leqslant \max\{x,y\} + c$
- ightharpoonup $e_1(x) = x^2 + 2 \implies \neg \exists a, b \in \mathbb{N} \text{ with } x^2 + 2 \leqslant ax + b$
- ightharpoonup $e_{n+2} \in E_{n+2}$ \Longrightarrow $e_{n+2}(e_0(x,x)) \in E_{n+2}$ and thus

$$e_{n+2}(x+x) \leqslant e_{n+2}(k+x)$$

for some $k \in \mathbb{N}$

WS 2023 Computability Theory lecture 3

Outline

- 1. Summary of Previous Lecture
- 2. Loop Programs
- 3. Elementary Functions
- 4. Grzegorczyk Hierarchy
- 5. Summary

Theorem (Grzegorczyk Hierarchy)

- $\bullet \quad \mathsf{E}_0 \subsetneq \mathsf{E}_1 \subsetneq \mathsf{E}_2 \subsetneq \cdots$
- $ext{0} ext{E}_3 = ext{E}$
- \bullet $\bigcup E_n = PR$ $n \geqslant 0$

Proof

 $\bullet \quad \mathsf{E}_0 \subseteq \mathsf{E}_1 \subseteq \mathsf{E}_2 \ \text{by definition}$

 $\mathsf{E}_{n+2}\subseteq\mathsf{E}_{n+3}$ for $n\geqslant 0$ because $\mathsf{e}_{n+1}\in\mathsf{E}_{n+3}$ by bounded recursion:

$$\mathsf{e}_{n+1}(x)\leqslant\mathsf{e}_{n+2}(x)\in\mathsf{E}_{n+3}$$

WS 2023 Computability Theory lecture 3

Important Concepts

 \triangleright 2_x(y)

► E₀, E₁, E₂, ...

► LOOP computable

- bounded recursion
- elementary function
- ► LOOP program

- ▶ e₀, e₁, e₂, ...
- Grzegorczyk hierarchy

homework for October 23