
WS 2023 lecture 4

Computability Theory

Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 2/26

Definition

function f : Nn → N is LOOP computable if ∃ LOOP program P(x1, . . . , xn; y) such that

y = f(x1, . . . , xn) after execution of P

Theorem

primitive recursive functions are LOOP computable

Definitions

▶ class E of elementary functions is smallest class of (total) functions f : Nn → N that
contains all initial functions, +, −̇ and is closed under composition, bounded summation
and bounded product

▶ binary function 2x(y) is defined by primitive recursion

20(y) = y 2x+1(y) = 22x(y)

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 3/26

Lemma

∀ elementary function f : Nn → N ∃ constant c ∈ N such that

f(x1, . . . , xn) < 2c (max {x1, . . . , xn})

Corollary

E ⊊ PR

Definition (bounded recursion)

class C of numeric functions is closed under bounded recursion if f : Nn+1 → N defined by
primitive recursion from g : Nn → N ∈ C and h : Nn+2 → N ∈ C and satisfying

f(x, y⃗) ⩽ i(x, y⃗)

for some i : Nn+1 → N ∈ C different from f , belongs to C

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 4/26

Definitions

▶ e0(x, y) = x+ y e1(x) = x2 + 2 en+2(x) =

{
2 if x = 0

en+1(en+2(x− 1)) if x > 0

▶ E0 is smallest class of functions that contains all initial functions
and is closed under composition and bounded recursion

▶ En+1 is smallest class of functions that contains all initial functions, e0, en

and is closed under composition and bounded recursion

Theorem (Grzegorczyk Hierarchy)

1 E0 ⊊ E1 ⊊ E2 ⊊ · · ·

2 E3 = E

3
⋃
n⩾0

En = PR

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 5/26

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture Topics 6/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 2. Recursive Functions 7/26

Definition

class R of recursive functions is smallest class of total functions that contains all initial
functions and is closed under composition, primitive recursion, and minimization:

(µ i) (f(i, y⃗) = 0) ∈ R

for all f : Nn+1 → N in R

Theorem

R is smallest class of total functions that contains

▶ all projection functions

▶ addition and multiplication

▶ characteristic function χ= of equality predicate

and is closed under composition and minimization

WS 2023 Computability Theory lecture 4 2. Recursive Functions 8/26

Theorem

R is smallest class C of total functions that contains

▶ all projection functions

▶ addition and multiplication

▶ characteristic function χ= of equality predicate

and is closed under composition and minimization

Proof

▶ C ⊆ R

▶ z(x) = 0 = (µ y) (π2
1(y, x) = 0) ∈ C

▶ s(x) = x+ 1 = π1
1(x) + χ=(x, x) = π1

1(x) + χ=(π
1
1(x), π

1
1(x)) ∈ C

▶ C is closed under primitive recursion . . .

WS 2023 Computability Theory lecture 4 2. Recursive Functions 9/26

Definition

CP is class of predicates whose characteristic function belongs to C

Lemma

CP is closed under boolean operations

Proof

CP is closed under negation

χ¬P(x1, . . . , xn) = χ=(χP(x1, . . . , xn),0) = χ=(χP(x1, . . . , xn), z(π
n
1(x1, . . . , xn)))

and disjunction

χP∨Q(x1, . . . , xn) = χ=(χ=(χP(x1, . . . , xn) + χQ(x1, . . . , xn),0),0)

and hence under conjunction

χP∧Q(x1, . . . , xn) = χ¬(¬P∨¬Q)(x1, . . . , xn)

WS 2023 Computability Theory lecture 4 2. Recursive Functions 10/26

Lemma

CP is closed under bounded universal and existential quantification

Proof

▶ bounded universal quantification

Q(x, y⃗) = (∀ i ⩽ x) P(i, y⃗) with P ∈ CP

χQ(x, y⃗) = χ=((µ i) (χP(i, y⃗) = 0 ∨ i = x+ 1), x+ 1) ∈ C

▶ bounded existential quantification

R(x, y⃗) = (∃ i ⩽ x) P(i, y⃗) with P ∈ CP
= ¬ (∀ i ⩽ x) ¬P(i, y⃗)

WS 2023 Computability Theory lecture 4 2. Recursive Functions 11/26

Definition

β(a, i) = π1(a) mod
(
1 + (i+ 1)π2(a)

)
Gödel’s β function

Lemma

β ∈ C

Proof

▶ x÷ 2 = (µ y) (2y = x ∨ 2y+ 1 = x) ∈ C

▶ π(x, y) = ((x+ y)2 + 3x+ y)÷ 2 ∈ C Cantor pairing function

▶ π1(a) = (µ x ⩽ a) (∃ y ⩽ a)
[
a = π(x, y)

]
∈ C

▶ π2(a) = (µ y ⩽ a) (∃ x ⩽ a)
[
a = π(x, y)

]
∈ C

▶ x mod y = (µ z < y) (∃ q ⩽ x)
[
x = qy+ z

]
∈ C

WS 2023 Computability Theory lecture 4 2. Recursive Functions 12/26

https://en.wikipedia.org/wiki/Pairing_function

Proof (cont’d)

▶ primitive recursion

f(0, y⃗) = g(y⃗) f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

with g, h ∈ C

▶ f̂(x, y⃗) = (µ z)
[
β(z,0) = g(y⃗) ∧ (∀ i < x)

(
β(z, i+ 1) = h(β(z, i), i, y⃗)

)]
∈ C

▶ z = f̂(x′, y⃗) satisfies β(z,0) = g(y⃗) ∧ (∀ i < x′)
(
β(z, i+ 1) = h(β(z, i), i, y⃗)

)
▶ claim: f(x, y⃗) = β(f̂(x′, y⃗), x) ∀ x′ ⩾ x, by induction on x

▶ f(0, y⃗) = g(y⃗) = β(f̂(x′, y⃗),0) ∀ x′ ⩾ 0

▶ f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗) = h(β(f̂(x′, y⃗), x), x, y⃗) = β(f̂(x′, y⃗), x+ 1) ∀ x′ ⩾ x+ 1

▶ f(x, y⃗) = β(f̂(x, y⃗), x) ∈ C

WS 2023 Computability Theory lecture 4 2. Recursive Functions 13/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 3. While Programs 14/26

While Programs

▶ natural numbers are only data type

▶ variables x, y, z, . . .

▶ commands

▶ assignment x := 0 x := y

▶ increment x++

▶ composition P ; Q

▶ loops

▶ LOOP x DO P OD

execute P exactly n times, where n is value of x before entering loop

▶ WHILE x > 0 DO P OD

repeatedly execute P while x > 0

WS 2023 Computability Theory lecture 4 3. While Programs 15/26

Definition

function f : Nn → N is WHILE computable if ∃ WHILE program P(x1, . . . , xn; y) such that

y = f(x1, . . . , xn) after execution of P

Theorem

recursive functions are WHILE computable

Proof

▶ minimization f(y1, . . . , yn) = (µ x) (g(x, y1, . . . , yn) = 0)

x := 0 ; Pg(x, y1, . . . , yn; z) ;

WHILE z > 0 DO

x++ ;

Pg(x, y1, . . . , yn; z)

OD

WS 2023 Computability Theory lecture 4 3. While Programs 16/26

Remark

not every WHILE computable function is recursive

Example

program P(x; y):

y := 0 ;

w := x ;

WHILE w > 0 DO

y++ ;

P×(y, y; z) ; P−̇(x, z;u) ; u = x −̇ y2

P−̇(z, x; v) ; P+(u, v;w) w = (x −̇ y2) + (y2 −̇ x) = |x− y2 |
OD

computes partial function
√
x = (µ y) (x = y2)

WS 2023 Computability Theory lecture 4 3. While Programs 17/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 18/26

Definition

class PA of partial recursive functions is smallest class of partial functions that contains all
initial functions and is closed under composition, primitive recursion, and unbounded
minimization:

(µ i) (f(i, y⃗) = 0) = min { i | f(i, y⃗) = 0 and f(j, y⃗) > 0 for all j < i }

belongs to PA whenever f : Nn+1 → N belongs to PA

Definition (semantics)

partial recursive expressions are evaluated according to call–by–value semantics

Example

function φ(x) = z((µ i) (i+ x = 0)) is undefined for x > 0

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 19/26

Theorem

partial recursive functions are WHILE computable

Proof

▶ · · ·
▶ minimization f(y1, . . . , yn) = (µ x) (g(x, y1, . . . , yn) = 0)

x := 0 ; Pg(x, y1, . . . , yn; z) ;

WHILE z > 0 DO

x++ ;

Pg(x, y1, . . . , yn; z)

OD

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 20/26

Theorem

WHILE computable functions are partial recursive

Corollary

function φ is partial recursive ⇐⇒ φ is WHILE computable

Notation

▶ φ(x1, . . . , xn) ↑ if φ(x1, . . . , xn) is undefined

▶ φ(x1, . . . , xn) ↓ if φ(x1, . . . , xn) is defined

▶ φ ≃ ψ if for all x1, . . . , xn ∈ N either

1 φ(x1, . . . , xn) ↑ and ψ(x1, . . . , xn) ↑ or

2 φ(x1, . . . , xn) ↓ and ψ(x1, . . . , xn) ↓ and φ(x1, . . . , xn) = ψ(x1, . . . , xn)

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 21/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 22/26

Definition

index ⌜f ⌝ ∈ N of derivation of partial recursive function f is defined inductively:

▶ ⌜z⌝ = ⟨0⟩
▶ ⌜s⌝ = ⟨1⟩
▶ ⌜πni ⌝ = ⟨2,n, i ⟩
▶ ⌜f ⌝ = ⟨3, ⌜g⌝, ⌜h1⌝, . . . , ⌜hm⌝⟩ if f is obtained by composing g and h1, . . . , hm

▶ ⌜f ⌝ = ⟨4, ⌜g⌝, ⌜h⌝⟩ if f is obtained by primitive recursion from g and h

▶ ⌜f ⌝ = ⟨5, ⌜g⌝⟩ if f is obtained by minimizing g

Remark (key insight)

from index we can reconstruct function

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 23/26

Kleene’s Normal Form Theorem

∃ primitive recursive function u ∀ n ⩾ 1 ∃ primitive recursive predicate Tn

∀ partial recursive function φ : Nn → N

φ(x1, . . . , xn) ≃ u((µ y) Tn (⌜φ⌝, x1, . . . , xn, y))

Corollary

1 every partial recursive function can be defined using one application of minimization

2 partial recursiveness and recursiveness coincide for total functions

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 24/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 6. Summary 25/26

Important Concepts

▶ Cantor pairing function

▶ Gödel’s β function

▶ index

▶ Kleene’s normal form theorem

▶ PA

▶ partial recursive function

▶ WHILE computable

▶ WHILE program

homework for October 30

WS 2023 Computability Theory lecture 4 6. Summary 26/26

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/04.pdf

	lecture 4
	Summary of Previous Lecture
	Topics

	Recursive Functions
	While Programs
	Partial Recursive Functions
	Normal Form Theorem
	Summary

