

WS 2023 lecture 4

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Recursive Functions
- 3. While Programs
- 4. Partial Recursive Functions
- 5. Normal Form Theorem
- 6. Summary

universitat WS 2023 Computability Theory lecture 4

Definition

function $f: \mathbb{N}^n \to \mathbb{N}$ is LOOP computable if \exists LOOP program $P(x_1, \ldots, x_n; y)$ such that $y = f(x_1, \ldots, x_n)$ after execution of P

Theorem

primitive recursive functions are LOOP computable

Definitions

- ▶ class E of elementary functions is smallest class of (total) functions $f: \mathbb{N}^n \to \mathbb{N}$ that contains all initial functions, +, and is closed under composition, bounded summation and bounded product
- binary function $2_x(y)$ is defined by primitive recursion

$$2_0(y) = y$$

 $2_{x+1}(y) = 2^{2_x(y)}$

universität Innsbruck WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture

3/26

Lemma

 \forall elementary function $f \colon \mathbb{N}^n \to \mathbb{N} \; \exists \text{ constant } c \in \mathbb{N} \;$ such that

 $f(x_1,...,x_n) < 2_c(\max\{x_1,...,x_n\})$

Corollary

 $\mathsf{E} \subsetneq \mathsf{PR}$

Definition (bounded recursion)

class C of numeric functions is closed under bounded recursion if $f: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by primitive recursion from $g: \mathbb{N}^n \to \mathbb{N} \in C$ and $h: \mathbb{N}^{n+2} \to \mathbb{N} \in C$ and satisfying

 $f(x,\vec{y}) \leqslant i(x,\vec{y})$

for some $i: \mathbb{N}^{n+1} \to \mathbb{N} \in C$ different from f, belongs to C

Definitions

•
$$e_0(x,y) = x + y$$
 $e_1(x) = x^2 + 2$ $e_{n+2}(x) = \begin{cases} 2 & \text{if } x = 0 \\ e_{n+1}(e_{n+2}(x-1)) & \text{if } x > 0 \end{cases}$

- E₀ is smallest class of functions that contains all initial functions and is closed under composition and bounded recursion
- ► E_{n+1} is smallest class of functions that contains all initial functions, e_0 , e_n and is closed under composition and bounded recursion

Theorem (Grzegorczyk Hierarchy)

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

universität WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture To

6/26

Outline

1. Summary of Previous Lecture

2. Recursive Functions

- 3. While Programs
- 4. Partial Recursive Functions
- 5. Normal Form Theorem
- 6. Summary

Definition

class **R** of **recursive functions** is smallest class of total functions that contains all initial functions and is closed under composition, primitive recursion, and minimization:

 $(\mu i) (f(i, \vec{y}) = 0) \in \mathsf{R}$

for all $f: \mathbb{N}^{n+1} \to \mathbb{N}$ in R

Theorem

R is smallest class of total functions that contains

- all projection functions
- addition and multiplication
- \blacktriangleright characteristic function $\chi_{=}$ of equality predicate

and is closed under composition and minimization

Theorem

- R is smallest class \mathcal{C} of total functions that contains
- all projection functions
- addition and multiplication
- characteristic function $\chi_{=}$ of equality predicate

and is closed under composition and minimization

Proof

- $\blacktriangleright \ \mathcal{C} \subseteq \mathsf{R}$
- ► $z(x) = 0 = (\mu y) (\pi_1^2(y, x) = 0) \in C$
- $\mathbf{s}(\mathbf{x}) = \mathbf{x} + \mathbf{1} = \pi_1^1(\mathbf{x}) + \chi_{=}(\mathbf{x}, \mathbf{x}) = \pi_1^1(\mathbf{x}) + \chi_{=}(\pi_1^1(\mathbf{x}), \pi_1^1(\mathbf{x})) \in \mathcal{C}$
- ► C is closed under primitive recursion ...

universität innsbruck	WS 2023	Computability Theory	lecture 4	2. Recursive Functions
--------------------------	---------	----------------------	-----------	------------------------

Definition

 $\mathcal{C}_{\mathcal{P}}$ is class of predicates whose characteristic function belongs to \mathcal{C}

Lemma

 \mathcal{C}_{P} is closed under boolean operations

Proof

 \mathcal{C}_{P} is closed under negation

$$\chi_{\neg P}(x_1,...,x_n) = \chi_{=}(\chi_{P}(x_1,...,x_n),\mathbf{0}) = \chi_{=}(\chi_{P}(x_1,...,x_n),\mathsf{z}(\pi_1^n(x_1,...,x_n)))$$

and disjunction

$$\chi_{P \vee Q}(x_1, \ldots, x_n) = \chi_{=}(\chi_{=}(\chi_{P}(x_1, \ldots, x_n) + \chi_{Q}(x_1, \ldots, x_n), 0), 0)$$

and hence under conjunction

 $\chi_{P \wedge Q}(x_1, \ldots, x_n) = \chi_{\neg(\neg P \vee \neg Q)}(x_1, \ldots, x_n)$

universität universität unspruck WS 2023 Computability Theory lecture 4 2. Recursive Functions

Lemma

 \mathcal{C}_{P} is closed under bounded universal and existential quantification

Proof

bounded universal quantification

$$Q(x, \vec{y}) = (\forall i \leq x) P(i, \vec{y}) \text{ with } P \in \mathcal{C}_P$$

$$\chi_{\mathcal{Q}}(\mathbf{x},\vec{\mathbf{y}}) = \chi_{=}((\mu \, i) \, (\chi_{\mathcal{P}}(i,\vec{\mathbf{y}}) = \mathbf{0} \, \lor \, i = \mathbf{x} + \mathbf{1}), \, \mathbf{x} + \mathbf{1}) \in \mathcal{C}$$

bounded existential quantification

$$R(x, \vec{y}) = (\exists i \leq x) P(i, \vec{y}) \quad \text{with } P \in \mathcal{C}_P$$
$$= \neg (\forall i \leq x) \neg P(i, \vec{y})$$

9/26

Definition

 $\beta(a,i) = \pi_1(a) \bmod \left(1 + (i+1)\pi_2(a)\right)$

Gödel's β function

Cantor pairing function

Lemma

 $\beta\in \mathcal{C}$

Proof

- ► $x \div 2 = (\mu y) (2y = x \lor 2y + 1 = x) \in C$
- $\bullet \ \pi(x,y) = ((x+y)^2 + 3x + y) \div 2 \in \mathcal{C}$
- $\pi_1(a) = (\mu x \leq a) (\exists y \leq a) [a = \pi(x, y)] \in C$
- $\pi_2(a) = (\mu y \leq a) (\exists x \leq a) [a = \pi(x, y)] \in C$
- ► $x \mod y = (\mu z < y) (\exists q \leq x) [x = qy + z] \in C$

Proof (cont'd)

primitive recursion

 $f(0, \vec{y}) = g(\vec{y})$

 $f(x+1,\vec{y}) = h(f(x,\vec{y}),x,\vec{y})$

with $g, h \in C$

- $\blacktriangleright \hat{f}(x,\vec{y}) = (\mu z) \left[\beta(z,0) = g(\vec{y}) \land (\forall i < x) \left(\beta(z,i+1) = h(\beta(z,i),i,\vec{y}) \right) \right] \in \mathcal{C}$
- ► $z = \hat{f}(x', \vec{y})$ satisfies $\beta(z, 0) = g(\vec{y}) \land (\forall i < x') (\beta(z, i+1) = h(\beta(z, i), i, \vec{y}))$
- claim: $f(x, \vec{y}) = \beta(\hat{f}(x', \vec{y}), x) \quad \forall x' \ge x$, by induction on x
 - $f(0, \vec{y}) = g(\vec{y}) = \beta(\hat{f}(x', \vec{y}), 0) \quad \forall x' \ge 0$

WS 2023 Computability Theory lecture 4

 $\blacktriangleright f(x+1,\vec{y}) = h(f(x,\vec{y}),x,\vec{y}) = h(\beta(\hat{f}(x',\vec{y}),x),x,\vec{y}) = \beta(\hat{f}(x',\vec{y}),x+1) \quad \forall x' \ge x+1$

2. Recursive Functions

• $f(x, \vec{y}) = \beta(\hat{f}(x, \vec{y}), x) \in C$

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive Functions

3. While Programs

- 4. Partial Recursive Functions
- 5. Normal Form Theorem
- 6. Summary

universität innsbruck WS 2023 Computability Theory lecture 4

While Programs

universität

- natural numbers are only data type
- ▶ variables *x*, *y*, *z*, ...
- ► commands
 - ▶ assignment x := 0 x := y
 - ► increment x++
 - ► composition P; Q
 - loops
 - LOOP x DO P OD

execute P exactly n times, where n is value of x before entering loop

• WHILE x > 0 DO P OD

repeatedly execute *P* while x > 0

13/26

Definition

function $f: \mathbb{N}^n \to \mathbb{N}$ is WHILE computable if \exists WHILE program $P(x_1, \ldots, x_n; y)$ such that $y = f(x_1, \ldots, x_n)$ after execution of P

3. While Programs

Theorem

recursive functions are WHILE computable

Proof

• minimization $f(y_1, ..., y_n) = (\mu x) (g(x, y_1, ..., y_n) = 0)$

 $\begin{aligned} x &:= 0; \ P_g(x, y_1, \dots, y_n; z); \\ \text{WHILE } z &> 0 \ \text{DO} \\ x++; \\ P_g(x, y_1, \dots, y_n; z) \\ \text{OD} \end{aligned}$

Remark

not every WHILE computable function is recursive

Example

program P(x; y): y := 0; w := x;WHILE w > 0 DO y++; $P_{\times}(y, y; z); P_{-}(x, z; u);$ $P_{-}(z, x; v); P_{+}(u, v; w)$ $u = x - y^{2}$ $w = (x - y^{2}) + (y^{2} - x) = |x - y^{2}|$ OD

computes partial function $\sqrt{x} = (\mu y) (x = y^2)$

universität innsbruck	WS 2023	Computability Theory	lecture 4	3. While Progr
--------------------------	---------	----------------------	-----------	----------------

3. While Programs

17/26

Outline

- **1. Summary of Previous Lecture**
- **2. Recursive Functions**
- **3. While Programs**

4. Partial Recursive Functions

- 5. Normal Form Theorem
- 6. Summary

universität WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions

Definition

class PA of partial recursive functions is smallest class of partial functions that contains all initial functions and is closed under composition, primitive recursion, and unbounded minimization:

$$(\mu i) (f(i, \vec{y}) = 0) = \min \{i \mid f(i, \vec{y}) = 0 \text{ and } f(j, \vec{y}) > 0 \text{ for all } j < i\}$$

belongs to PA whenever $f: \mathbb{N}^{n+1} \to \mathbb{N}$ belongs to PA

Definition (semantics)

partial recursive expressions are evaluated according to **call-by-value** semantics

Example

function $\varphi(x) = z((\mu i) (i + x = 0))$ is undefined for x > 0

universität WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions innsbruck

Theorem

partial recursive functions are WHILE computable

Proof

- •
- minimization $f(y_1, \ldots, y_n) = (\mu x) (g(x, y_1, \ldots, y_n) = 0)$

 $x := 0; P_g(x, y_1, ..., y_n; z);$ WHILE z > 0 DO x++; P_g(x, y_1, ..., y_n; z) OD

Theorem

WHILE computable functions are partial recursive

Corollary

function φ is partial recursive $\iff \varphi$ is WHILE computable

Notation

- $\varphi(x_1, \ldots, x_n)$ \uparrow if $\varphi(x_1, \ldots, x_n)$ is undefined
- $\varphi(x_1, \ldots, x_n) \downarrow$ if $\varphi(x_1, \ldots, x_n)$ is defined
- $\varphi \simeq \psi$ if for all $x_1, \ldots, x_n \in \mathbb{N}$ either
 - (1) $\varphi(x_1,\ldots,x_n)\uparrow$ and $\psi(x_1,\ldots,x_n)\uparrow$ or
 - (2) $\varphi(x_1, \ldots, x_n) \downarrow$ and $\psi(x_1, \ldots, x_n) \downarrow$ and $\varphi(x_1, \ldots, x_n) = \psi(x_1, \ldots, x_n)$

universität Innsbruck Unsbruck
WS 2023 Computability Theory lecture 4
4. Partial Recursive Functions

```
21/26
```

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive Functions
- 3. While Programs
- 4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

universität universität unspruck
WS 2023 Computability Theory lecture 4
5. Normal Form Theorem

Definition

index $\lceil f \rceil \in \mathbb{N}$ of derivation of partial recursive function *f* is defined inductively:

- \blacktriangleright $\neg z \neg = \langle 0 \rangle$
- \blacktriangleright $\lceil s \rceil = \langle 1 \rangle$
- $\blacktriangleright \ \ \lceil \pi_i^n \rceil = \langle 2, n, i \rangle$
- $\lceil f \rceil = \langle 3, \lceil g \rceil, \lceil h_1 \rceil, \dots, \lceil h_m \rceil \rangle$ if f is obtained by composing g and h_1, \dots, h_m
- $\blacktriangleright \ \lceil f \rceil = \langle 4, \lceil g \rceil, \lceil h \rceil \rangle$
- $\blacktriangleright \ \lceil f \rceil = \langle 5, \lceil g \rceil \rangle$
- if *f* is obtained by composing *g* and n_1, \ldots, n_m if *f* is obtained by primitive recursion from *g* and *h* if *f* is obtained by minimizing *g*

Remark (key insight)

from index we can reconstruct function

Kleene's Normal Form Theorem

∃ primitive recursive function \mathbf{u} $\forall n \ge 1$ ∃ primitive recursive predicate \mathbf{T}_n ∀ partial recursive function $\varphi : \mathbb{N}^n \to \mathbb{N}$

 $\varphi_{1} = \varphi_{1} + \varphi_{2} + \varphi_{3} + \varphi_{3$

 $\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n)\simeq \mathbf{u}((\mu\,\mathbf{y})\,\mathbf{T}_n(\ulcorner\varphi\urcorner,\mathbf{x}_1,\ldots,\mathbf{x}_n,\mathbf{y}))$

Corollary

- every partial recursive function can be defined using one application of minimization
- Partial recursiveness and recursiveness coincide for total functions

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive Functions
- 3. While Programs
- 4. Partial Recursive Functions
- 5. Normal Form Theorem
- 6. Summary

Important Concepts

- Cantor pairing function
- Finite Gödel's β function
- index
- Kleene's normal form theorem

- ► PA
- partial recursive function
- WHILE computable
- ► WHILE program

homework for October 30

universität WS 2023 Computability Theory lecture 4 6. Summary

25/26

universität
 WS 2023
 Computability Theory
 lecture 4
 6. Summary