
WS 2023 lecture 4

Computability Theory

Aart Middeldorp

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 2/26

Definition

function f : Nn → N is LOOP computable if ∃ LOOP program P(x1, . . . , xn; y) such that

y = f(x1, . . . , xn) after execution of P

Theorem

primitive recursive functions are LOOP computable

Definitions

▶ class E of elementary functions is smallest class of (total) functions f : Nn → N that
contains all initial functions, +, −̇ and is closed under composition, bounded summation
and bounded product

▶ binary function 2x(y) is defined by primitive recursion

20(y) = y 2x+1(y) = 22x(y)

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 3/26

Lemma

∀ elementary function f : Nn → N ∃ constant c ∈ N such that

f(x1, . . . , xn) < 2c (max {x1, . . . , xn})

Corollary

E ⊊ PR

Definition (bounded recursion)

class C of numeric functions is closed under bounded recursion if f : Nn+1 → N defined by
primitive recursion from g : Nn → N ∈ C and h : Nn+2 → N ∈ C and satisfying

f(x, y⃗) ⩽ i(x, y⃗)

for some i : Nn+1 → N ∈ C different from f , belongs to C

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 4/26

http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami

Definitions

▶ e0(x, y) = x+ y e1(x) = x2 + 2 en+2(x) =

{
2 if x = 0

en+1(en+2(x− 1)) if x > 0

▶ E0 is smallest class of functions that contains all initial functions
and is closed under composition and bounded recursion

▶ En+1 is smallest class of functions that contains all initial functions, e0, en

and is closed under composition and bounded recursion

Theorem (Grzegorczyk Hierarchy)

1 E0 ⊊ E1 ⊊ E2 ⊊ · · ·

2 E3 = E

3
⋃
n⩾0

En = PR

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture 5/26

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 4 1. Summary of Previous Lecture Topics 6/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 2. Recursive Functions 7/26

Definition

class R of recursive functions is smallest class of total functions that contains all initial
functions and is closed under composition, primitive recursion, and minimization:

(µ i) (f(i, y⃗) = 0) ∈ R

for all f : Nn+1 → N in R

Theorem

R is smallest class of total functions that contains

▶ all projection functions

▶ addition and multiplication

▶ characteristic function χ= of equality predicate

and is closed under composition and minimization

WS 2023 Computability Theory lecture 4 2. Recursive Functions 8/26

Theorem

R is smallest class C of total functions that contains

▶ all projection functions

▶ addition and multiplication

▶ characteristic function χ= of equality predicate

and is closed under composition and minimization

Proof

▶ C ⊆ R

▶ z(x) = 0 = (µ y) (π2
1(y, x) = 0) ∈ C

▶ s(x) = x+ 1 = π1
1(x) + χ=(x, x) = π1

1(x) + χ=(π
1
1(x), π

1
1(x)) ∈ C

▶ C is closed under primitive recursion . . .

WS 2023 Computability Theory lecture 4 2. Recursive Functions 9/26

Definition

CP is class of predicates whose characteristic function belongs to C

Lemma

CP is closed under boolean operations

Proof

CP is closed under negation

χ¬P(x1, . . . , xn) = χ=(χP(x1, . . . , xn),0) = χ=(χP(x1, . . . , xn), z(π
n
1(x1, . . . , xn)))

and disjunction

χP∨Q(x1, . . . , xn) = χ=(χ=(χP(x1, . . . , xn) + χQ(x1, . . . , xn),0),0)

and hence under conjunction

χP∧Q(x1, . . . , xn) = χ¬(¬P∨¬Q)(x1, . . . , xn)

WS 2023 Computability Theory lecture 4 2. Recursive Functions 10/26

Lemma

CP is closed under bounded universal and existential quantification

Proof

▶ bounded universal quantification

Q(x, y⃗) = (∀ i ⩽ x) P(i, y⃗) with P ∈ CP

χQ(x, y⃗) = χ=((µ i) (χP(i, y⃗) = 0 ∨ i = x+ 1), x+ 1) ∈ C

▶ bounded existential quantification

R(x, y⃗) = (∃ i ⩽ x) P(i, y⃗) with P ∈ CP
= ¬ (∀ i ⩽ x) ¬P(i, y⃗)

WS 2023 Computability Theory lecture 4 2. Recursive Functions 11/26

Definition

β(a, i) = π1(a) mod
(
1 + (i+ 1)π2(a)

)
Gödel’s β function

Lemma

β ∈ C

Proof

▶ x÷ 2 = (µ y) (2y = x ∨ 2y+ 1 = x) ∈ C

▶ π(x, y) = ((x+ y)2 + 3x+ y)÷ 2 ∈ C Cantor pairing function

▶ π1(a) = (µ x ⩽ a) (∃ y ⩽ a)
[
a = π(x, y)

]
∈ C

▶ π2(a) = (µ y ⩽ a) (∃ x ⩽ a)
[
a = π(x, y)

]
∈ C

▶ x mod y = (µ z < y) (∃ q ⩽ x)
[
x = qy+ z

]
∈ C

WS 2023 Computability Theory lecture 4 2. Recursive Functions 12/26

https://en.wikipedia.org/wiki/Pairing_function

Proof (cont’d)

▶ primitive recursion

f(0, y⃗) = g(y⃗) f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

with g, h ∈ C

▶ f̂(x, y⃗) = (µ z)
[
β(z,0) = g(y⃗) ∧ (∀ i < x)

(
β(z, i+ 1) = h(β(z, i), i, y⃗)

)]
∈ C

▶ z = f̂(x′, y⃗) satisfies β(z,0) = g(y⃗) ∧ (∀ i < x′)
(
β(z, i+ 1) = h(β(z, i), i, y⃗)

)
▶ claim: f(x, y⃗) = β(f̂(x′, y⃗), x) ∀ x′ ⩾ x, by induction on x

▶ f(0, y⃗) = g(y⃗) = β(f̂(x′, y⃗),0) ∀ x′ ⩾ 0

▶ f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗) = h(β(f̂(x′, y⃗), x), x, y⃗) = β(f̂(x′, y⃗), x+ 1) ∀ x′ ⩾ x+ 1

▶ f(x, y⃗) = β(f̂(x, y⃗), x) ∈ C

WS 2023 Computability Theory lecture 4 2. Recursive Functions 13/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 3. While Programs 14/26

While Programs

▶ natural numbers are only data type

▶ variables x, y, z, . . .

▶ commands

▶ assignment x := 0 x := y

▶ increment x++

▶ composition P ; Q

▶ loops

▶ LOOP x DO P OD

execute P exactly n times, where n is value of x before entering loop

▶ WHILE x > 0 DO P OD

repeatedly execute P while x > 0

WS 2023 Computability Theory lecture 4 3. While Programs 15/26

Definition

function f : Nn → N is WHILE computable if ∃ WHILE program P(x1, . . . , xn; y) such that

y = f(x1, . . . , xn) after execution of P

Theorem

recursive functions are WHILE computable

Proof

▶ minimization f(y1, . . . , yn) = (µ x) (g(x, y1, . . . , yn) = 0)

x := 0 ; Pg(x, y1, . . . , yn; z) ;

WHILE z > 0 DO

x++ ;

Pg(x, y1, . . . , yn; z)

OD

WS 2023 Computability Theory lecture 4 3. While Programs 16/26

Remark

not every WHILE computable function is recursive

Example

program P(x; y):

y := 0 ;

w := x ;

WHILE w > 0 DO

y++ ;

P×(y, y; z) ; P−̇(x, z;u) ; u = x −̇ y2

P−̇(z, x; v) ; P+(u, v;w) w = (x −̇ y2) + (y2 −̇ x) = |x− y2 |
OD

computes partial function
√
x = (µ y) (x = y2)

WS 2023 Computability Theory lecture 4 3. While Programs 17/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 18/26

Definition

class PA of partial recursive functions is smallest class of partial functions that contains all
initial functions and is closed under composition, primitive recursion, and unbounded
minimization:

(µ i) (f(i, y⃗) = 0) = min { i | f(i, y⃗) = 0 and f(j, y⃗) > 0 for all j < i }

belongs to PA whenever f : Nn+1 → N belongs to PA

Definition (semantics)

partial recursive expressions are evaluated according to call–by–value semantics

Example

function φ(x) = z((µ i) (i+ x = 0)) is undefined for x > 0

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 19/26

Theorem

partial recursive functions are WHILE computable

Proof

▶ · · ·
▶ minimization f(y1, . . . , yn) = (µ x) (g(x, y1, . . . , yn) = 0)

x := 0 ; Pg(x, y1, . . . , yn; z) ;

WHILE z > 0 DO

x++ ;

Pg(x, y1, . . . , yn; z)

OD

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 20/26

Theorem

WHILE computable functions are partial recursive

Corollary

function φ is partial recursive ⇐⇒ φ is WHILE computable

Notation

▶ φ(x1, . . . , xn) ↑ if φ(x1, . . . , xn) is undefined

▶ φ(x1, . . . , xn) ↓ if φ(x1, . . . , xn) is defined

▶ φ ≃ ψ if for all x1, . . . , xn ∈ N either

1 φ(x1, . . . , xn) ↑ and ψ(x1, . . . , xn) ↑ or

2 φ(x1, . . . , xn) ↓ and ψ(x1, . . . , xn) ↓ and φ(x1, . . . , xn) = ψ(x1, . . . , xn)

WS 2023 Computability Theory lecture 4 4. Partial Recursive Functions 21/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 22/26

Definition

index ⌜f ⌝ ∈ N of derivation of partial recursive function f is defined inductively:

▶ ⌜z⌝ = ⟨0⟩
▶ ⌜s⌝ = ⟨1⟩
▶ ⌜πni ⌝ = ⟨2,n, i ⟩
▶ ⌜f ⌝ = ⟨3, ⌜g⌝, ⌜h1⌝, . . . , ⌜hm⌝⟩ if f is obtained by composing g and h1, . . . , hm

▶ ⌜f ⌝ = ⟨4, ⌜g⌝, ⌜h⌝⟩ if f is obtained by primitive recursion from g and h

▶ ⌜f ⌝ = ⟨5, ⌜g⌝⟩ if f is obtained by minimizing g

Remark (key insight)

from index we can reconstruct function

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 23/26

Kleene’s Normal Form Theorem

∃ primitive recursive function u ∀ n ⩾ 1 ∃ primitive recursive predicate Tn

∀ partial recursive function φ : Nn → N

φ(x1, . . . , xn) ≃ u((µ y) Tn (⌜φ⌝, x1, . . . , xn, y))

Corollary

1 every partial recursive function can be defined using one application of minimization

2 partial recursiveness and recursiveness coincide for total functions

WS 2023 Computability Theory lecture 4 5. Normal Form Theorem 24/26

Outline
1. Summary of Previous Lecture

2. Recursive Functions

3. While Programs

4. Partial Recursive Functions

5. Normal Form Theorem

6. Summary

WS 2023 Computability Theory lecture 4 6. Summary 25/26

Important Concepts

▶ Cantor pairing function

▶ Gödel’s β function

▶ index

▶ Kleene’s normal form theorem

▶ PA

▶ partial recursive function

▶ WHILE computable

▶ WHILE program

homework for October 30

WS 2023 Computability Theory lecture 4 6. Summary 26/26

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/04.pdf

	lecture 4
	Summary of Previous Lecture
	Topics

	Recursive Functions
	While Programs
	Partial Recursive Functions
	Normal Form Theorem
	Summary

