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Definition

φn
e (x1, . . . , xn) = u((µ y) (tn(e, x1, . . . , xn, y) = 0))

Lemma

φn
0 , φn

1 , φn
2 , . . . is computable enumeration of all n-ary partial recursive functions

Definition

predicate P : Nn → B is decidable if χP is recursive

Theorem

following problem is undecidable:

instance: natural number x

question: is φx(x) defined ?
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Kleene’s s–m–n or Parameterization Theorem

∀m, n ⩾ 1 ∃ primitive recursive function smn : Nm+1 → N ∀ e ∈ N

φm+n
e (x1, . . . , xm, y1, . . . , yn) ≃ φn

smn (e,x1, ..., xm)
(y1, . . . , yn)

Kleene’s Fixed Point Theorem

∀ recursive function f : N → N ∃ e ∈ N such that φe(x) ≃ φf(e)(x)
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Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .
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Definitions

▶ set A ⊆ N is recursive if its characteristic function χA(x) =

{
1 if x ∈ A

0 otherwise
is recursive

▶ disjoint sets A, B ⊆ N are recursively separable if ∃ recursive function f : N → {0,1}
such that

x ∈ A =⇒ f(x) = 0 x ∈ B =⇒ f(x) = 1

A B

f(x) = 0 f(x) = 1
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Lemma

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets A = {x | φx(x) = 0} and B = {x | φx(x) = 1} are recursively inseparable

Proof

▶ suppose ∃ recursive function f : N → {0,1} separating A and B

▶ g(x) = 1 −̇ f(x) is recursive

▶ ∃ e such that g = φe

f(e) = 0

=⇒ φe(e) = 1 =⇒ e ∈ B =⇒ f(e) = 1

f(e) = 1

=⇒ φe(e) = 0 =⇒ e ∈ A =⇒ f(e) = 0 �
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Definition

set A ⊆ N is index set if

d ∈ A ∧ φe ≃ φd =⇒ e ∈ A

for all d, e ∈ N

Examples

▶ ∅ and N are (trivial) index sets

▶ {e | φe is recursive function} is index set

▶ {⟨0⟩, ⟨1⟩} ∪ {⟨2,n, i ⟩ | 1 ⩽ i ⩽ n} is no index set

Rice’s Theorem

non-trivial index sets are not recursive
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Rice’s Theorem

non-trivial index sets are not recursive

Proof

▶ let A be non-trivial index set

and let d ∈ A and e /∈ A

▶ suppose A is recursive

▶ function f defined by f(x) =

{
e if x ∈ A

d if x /∈ A
is recursive

▶ fixed point theorem =⇒ ∃ a such that φa ≃ φf(a)

a ∈ A

=⇒ f(a) ∈ A =⇒ e ∈ A

a /∈ A

=⇒ f(a) /∈ A =⇒ d /∈ A �
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Definition

set A ⊆ N is recursively enumerable if A = ∅ or A is range of unary recursive function

Remark

other terminology: semi-decidable computably enumerable

Lemma

set A is recursive if and only if A and N \ A are recursively enumerable

Theorem

following statements are equivalent for any set A ⊆ N:

1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function
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1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function

f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function

f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function

f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 1 =⇒ 3

▶ A = ∅ or A is range of unary recursive function f

▶ ∅ is domain of unary partial recursive function f(x) = (µ y) (x+ 1 = 0)

▶ define unary function g(x) = (µ y) (f(y) = x)

▶ g is partial recursive

▶ domain of g is A

WS 2023 Computability Theory lecture 6 2. Recursive and Recursive Enumerable Sets 12/31



1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 3 =⇒ 2

▶ suppose A is domain of unary partial recursive function φe

▶ define unary function f(x) = x+ z(φe(x))

▶ f is partial recursive

▶ φe(x)↓ ⇐⇒ f(x)↓

=⇒ f(x) = x

▶ range of f is A
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1 A is recursively enumerable

2 A is range of unary partial recursive function

3 A is domain of unary partial recursive function

Proof 2 =⇒ 1

▶ suppose A is range of unary partial recursive function φe

▶ if A = ∅ then A is recursively enumerable

suppose A ̸= ∅ and let a ∈ A

▶ define f(x, s) =

{
φe(x) if (∃ y < s) T1(e, x, y)

a otherwise
and g(x) = f(π1(x), π2(x))

▶ f and g are recursive

▶ claim: range of g is A

▶ z ∈ A =⇒ z = φe(x) for some x =⇒ T1(e, x, y) for some y

▶ f(x, s) = z for any s > y =⇒ g(π(x, s)) = z for any s > y
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Lemma

every non-empty recursively enumerable set A ⊆ N is range of primitive recursive function

Proof

▶ A is range of unary recursive function f

▶ let e be index of f and let a be arbitrary element of A

▶ function

g(x) =

{
u((x)1) if T1(e, (x)0, (x)1)

a otherwise

is primitive recursive

▶ range of g is A
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Definition

set A ⊆ N is diophantine if ∃ polynomial P(x, y1, . . . , yn) with integer coefficients such that

x ∈ A ⇐⇒ ∃ y1 · · · ∃ yn P(x, y1, . . . , yn) = 0

Examples

▶ {x | x is even}

P(x, y) = x− 2y

▶ {x2 | x ∈ N}

P(x, y) = x− y2

▶

{x ⩾ 1 | x is composite}

P(x, y, z) = x− (y+ 2)(z + 2)
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Lemma

diophantine sets are recursively enumerable

Proof

▶ arbitrary diophantine set A = {x | ∃ y1 · · · ∃ yn P(x, y1, . . . , yn) = 0}

▶ function φ(x) = (µ y) (P(x, (y)1, . . . , (y)n)2 = 0) is partial recursive

▶ x ∈ A ⇐⇒ φ(x)↓

Theorem (Matiyasevich 1970)

recursively enumerable sets are diophantine

Corollary (MRDP Theorem)

Hilbert’s 10th problem is unsolvable
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Lemma

A is recursively enumerable ⇐⇒ A = {P(x1, . . . , xn) | x1, . . . , xn ∈ N and P(x1, . . . , xn) ⩾ 0}
for some polynomial P(x1, . . . , xn) with integer coefficients

Proof

⇐= x ∈ A ⇐⇒ ∃ x1 · · · ∃ xn P(x1, . . . , xn)− x = 0

=⇒ ∃ polynomial Q(x, y1, . . . , yn) with integer coefficients such that

x ∈ A ⇐⇒ ∃ y1 · · · ∃ yn Q(x, y1, . . . , yn) = 0

define P(x, y1, . . . , yn) = x− (x+ 1) (Q(x, y1, . . . , yn))2
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Example

(Jones, Sato, Wada, Wiens 1976)

polynomial P(a,b, . . . , z):

(k + 2)

(
1 − (wz + h+ j− q)2 −

(
(gk + 2g+ k + 1)(h+ j) + h− z

)2

− (2n+ p+ q+ z − e)2 −
(
(a2 − 1)y2 + 1 − x2

)2

−
(
16(k + 1)3(k + 2)(n+ 1)2 + 1 − f2

)2 − (n+ l+ v− y)2

−
(
16r2y4(a2 − 1) + 1 − u2

)2 − (e3(e+ 2)(a+ 1)2 + 1 − o2)2

−
(
((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1 − (x+ cu)2

)2

−
(
(a2 − 1) l2 + 1 −m2

)2 − (ai+ k + 1 − l− i)2

−
(
p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m

)2

−
(
z + pl(a− p) + t(2ap− p2 − 1)− pm

)2

−
(
q+ y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x

)2
)

generates all prime numbers
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Definition (Fibonacci numbers)

F0 = 0 F1 = 1 Fn+2 = Fn + Fn+1

Theorem (Jones 1975)

P(x, y) = 2x+ 2y3x2 + y2x3 − 2yx4 − x5 − y4x generates set of Fibonacci numbers

demo
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Definition (Fibonacci numbers)

F0 = 0 F1 = 1 Fn+2 = Fn + Fn+1

Lemma 1

F2
i+1 − Fi+1 Fi − F2

i = (−1) i for all i ⩾ 0

Proof

induction on i

▶ i = 0

=⇒ F2
i+1 − Fi+1 Fi − F2

i = 1 − 0 − 0

= 1 = (−1)0

▶ i = 1

=⇒ F2
i+1 − Fi+1 Fi − F2

i = 1 − 1 − 1

= −1 = (−1)1

▶ i > 1 =⇒ F2
i+1 − Fi+1 Fi − F2

i = (Fi−1 + Fi)
2 − (Fi−1 + Fi) Fi − F2

i

= −F2
i + F2

i−1 + Fi Fi−1

= −(F2
i − Fi Fi−1 − F2

i−1) = −(−1) i−1 = (−1) i
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Lemma 2

y2 − yx− x2 = 1 ∧ x, y ⩾ 0 =⇒ x = F2 i and y = F2 i+1 for some i ⩾ 0

Proof

induction on x
▶ x = 0

=⇒ y = 1 =⇒ i = 0

▶ x > 0 =⇒ yx+ x2 > y =⇒ 1 = y2 − (yx+ x2) < y2 − y =⇒ y ⩾ 2

(x+ 1)2 = x2 + 2x+ 1 ⩽ x2 + yx+ 1 = y2 =⇒ y > x
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x = a+ b

and y = b+ x =⇒ x = F2(i+1) and y = F2(i+1)+1
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Lemma 3

y2 − yx− x2 = −1 ∧ x ⩾ 0 ∧ y > 0 =⇒ x = F2 i+1 and y = F2 i+2 for some i ⩾ 0

Proof

case analysis

▶ x ⩽ y

let a = y− x and b = x

a ⩾ 0 and b ⩾ 0

b2 − ba− a2 = x2 − x(y− x)− (y− x)2

= −(y2 − yx− x2) = 1

a = F2 i and b = F2 i+1 for some i ⩾ 0 according to lemma 2

x = F2 i+1

and y = a+ x = F2 i+2

▶ y < x =⇒ yx = y2 − x2 + 1 ⩽ 0 =⇒ yx = 0 =⇒ y = 0 �
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Corollary 1

{x ⩾ 0 | y2 − yx− x2 = ±1 for some y > 0} is set of Fibonacci numbers

Corollary 2

{x ⩾ 0 | (y2 − yx− x2)2 − 1 = 0 for some y > 0} is set of Fibonacci numbers

Corollary

set of Fibonacci numbers is diophantine
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Lemma 4

y > 0 ∧ x ⩾ 0 =⇒ y2 − yx− x2 ̸= 0

Proof

case analysis

▶ x = 0

=⇒ y2 − yx− x2 = y2 > 0

▶ x > 0

4(y2 − yx− x2) = (2y− x)2 − 5x2

(2y− x)2 − 5x2 = 0 =⇒
√

5 =
|2y− x |

x
�

(2y− x)2 − 5x2 ̸= 0 =⇒ y2 − yx− x2 ̸= 0
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Theorem

set of Fibonacci numbers equals non-negative values of P(x, y) = x(2 − (y2 − yx− x2)2)

Proof

two directions

▶ x is Fibonacci number =⇒ x = Fi for some i ⩾ 0

y = Fi+1 =⇒ (y2 − yx− x2)2 = 1 =⇒ 2 − (y2 − yx− x2)2 = 1 =⇒ P(x, y) = x

▶ z = P(x, y) > 0 for some x, y ⩾ 0 =⇒ z = x(2 − (y2 − yx− x2)2)

two cases

▶ y = 0

=⇒ z = x(2 − x4) =⇒ x = 1 =⇒ x is Fibonacci number

▶ y > 0 =⇒ y2 − yx− x2 ̸= 0 by lemma 4 =⇒ 0 < (y2 − yx− x2)2

< 2

(y2 − yx− x2)2 = 1 =⇒ z = x =⇒ z is Fibonacci number by corollary 2
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▶ z = P(x, y) > 0 for some x, y ⩾ 0
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Theorem (Jones 1975)

P(x, y) = 2x+ 2y3x2 + y2x3 − 2yx4 − x5 − y4x generates set of Fibonacci numbers

Proof

2x+ 2y3x2 + y2x3 − 2yx4 − x5 − y4x = x(2 − (y2 − yx− x2)2)

Remark

P(2,2) = −28

Theorem

there exists no polynomial Q(x1, . . . , xn) such that

{Q(x1, . . . , xn) | x1, . . . , xn ⩾ 0}

is set of Fibonacci numbers
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Important Concepts

▶ diophantine set

▶ Fibonacci numbers

▶ index set

▶ recursive set

▶ recursive enumerable set

▶ recursive separable sets

homework for November 13
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