

WS 2023 lecture 6

Computability Theory

Aart Middeldorp

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive and Recursive Enumerable Sets
- 3. Diophantine Sets
- 4. Fibonacci Numbers
- 5. Summary

$$\varphi_{\boldsymbol{e}}^{n}(x_{1},\ldots,x_{n})=\mathsf{u}((\mu\,y)\,(\mathsf{t}_{n}(\boldsymbol{e},x_{1},\ldots,x_{n},y)=\mathbf{0}))$$

Lemma

 φ_0^n , φ_1^n , φ_2^n , ... is computable enumeration of all *n*-ary partial recursive functions

Definition

predicate $P \colon \mathbb{N}^n \to \mathbb{B}$ is decidable if χ_P is recursive

Theorem

following problem is undecidable:

instance: natural number x

question: is $\varphi_x(x)$ defined ?

Kleene's s-m-n or Parameterization Theorem

 $\forall m, n \ge 1 \quad \exists \text{ primitive recursive function } \mathbf{s}_n^m \colon \mathbb{N}^{m+1} \to \mathbb{N} \quad \forall e \in \mathbb{N}$

$$\varphi_e^{m+n}(x_1,\ldots,x_m,y_1,\ldots,y_n)\simeq \varphi_{\mathbf{s}_n^m(e,x_1,\ldots,x_m)}^n(y_1,\ldots,y_n)$$

Kleene's Fixed Point Theorem

 \forall recursive function $f: \mathbb{N} \to \mathbb{N} \quad \exists e \in \mathbb{N}$ such that $\varphi_e(x) \simeq \varphi_{f(e)}(x)$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Outline

1. Summary of Previous Lecture

2. Recursive and Recursive Enumerable Sets

- 3. Diophantine Sets
- 4. Fibonacci Numbers
- 5. Summary

► set $A \subseteq \mathbb{N}$ is recursive if its characteristic function $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ is recursive

- ▶ set $A \subseteq \mathbb{N}$ is recursive if its characteristic function $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ is recursive
- ► disjoint sets $A, B \subseteq \mathbb{N}$ are recursively separable if \exists recursive function $f : \mathbb{N} \to \{0, 1\}$ such that

$$x \in A \implies f(x) = 0 \qquad \qquad x \in B \implies f(x) = 1$$

- ▶ set $A \subseteq \mathbb{N}$ is recursive if its characteristic function $\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ is recursive
- ► disjoint sets $A, B \subseteq \mathbb{N}$ are recursively separable if \exists recursive function $f : \mathbb{N} \to \{0, 1\}$ such that

$$x \in A \implies f(x) = 0 \qquad \qquad x \in B \implies f(x) = 1$$

if A and B are recursively inseparable then A and B are not recursive

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets
$$A = \{x \mid \varphi_x(x) = 0\}$$
 and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

Proof

▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- $\exists e \text{ such that } g = \varphi_e$

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets
$$A = \{x \mid \varphi_x(x) = 0\}$$
 and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- ▶ $\exists e \text{ such that } g = \varphi_e$

$$f(e) = 0$$

 $f(e) = 1$

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- $\exists e \text{ such that } g = \varphi_e$

$$egin{array}{rl} f(e) = 0 & \Longrightarrow & arphi_e(e) = 1 \ f(e) = 1 & \Longrightarrow & arphi_e(e) = 0 \end{array}$$

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- $\exists e \text{ such that } g = \varphi_e$

$$egin{array}{rcl} f(e) = 0 & \Longrightarrow & arphi_e(e) = 1 & \Longrightarrow & e \in B \ f(e) = 1 & \Longrightarrow & arphi_e(e) = 0 & \Longrightarrow & e \in A \end{array}$$

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- $\exists e \text{ such that } g = \varphi_e$

$$egin{array}{rcl} f(e) = 0 & \Longrightarrow & arphi_e(e) = 1 & \Longrightarrow & e \in B & \Longrightarrow & f(e) = 1 \ f(e) = 1 & \Longrightarrow & arphi_e(e) = 0 & \Longrightarrow & e \in A & \Longrightarrow & f(e) = 0 \end{array}$$

if A and B are recursively inseparable then A and B are not recursive

Theorem

sets $A = \{x \mid \varphi_x(x) = 0\}$ and $B = \{x \mid \varphi_x(x) = 1\}$ are recursively inseparable

Proof

- ▶ suppose \exists recursive function $f \colon \mathbb{N} \to \{0, 1\}$ separating A and B
- g(x) = 1 f(x) is recursive
- $\exists e \text{ such that } g = \varphi_e$

$$f(e) = 0 \implies \varphi_e(e) = 1 \implies e \in B \implies f(e) = 1$$

 $f(e) = 1 \implies \varphi_e(e) = 0 \implies e \in A \implies f(e) = 0$

4

set $A \subseteq \mathbb{N}$ is index set if

$$d \in A \land \varphi_e \simeq \varphi_d \implies e \in A$$

for all $d, e \in \mathbb{N}$

set $A \subseteq \mathbb{N}$ is index set if

$$d \in A \land \varphi_e \simeq \varphi_d \implies e \in A$$

for all $d, e \in \mathbb{N}$

Examples

▶ \varnothing and \mathbb{N} are (trivial) index sets

set $A \subseteq \mathbb{N}$ is index set if

$$d \in A \land \varphi_e \simeq \varphi_d \implies e \in A$$

for all $d, e \in \mathbb{N}$

Examples

- ▶ \varnothing and \mathbb{N} are (trivial) index sets
- $\{e \mid \varphi_e \text{ is recursive function}\}$ is index set

set $A \subseteq \mathbb{N}$ is index set if

$$d \in A \land \varphi_e \simeq \varphi_d \implies e \in A$$

for all $d, e \in \mathbb{N}$

Examples

- Ø and ℕ are (trivial) index sets
- $\{e \mid \varphi_e \text{ is recursive function}\}$ is index set
- ► $\{\langle 0 \rangle, \langle 1 \rangle\} \cup \{\langle 2, n, i \rangle \mid 1 \leqslant i \leqslant n\}$ is no index set

set $A \subseteq \mathbb{N}$ is index set if

$$d \in A \land \varphi_e \simeq \varphi_d \implies e \in A$$

for all $d, e \in \mathbb{N}$

Examples

- ▶ \varnothing and \mathbb{N} are (trivial) index sets
- $\{e \mid \varphi_e \text{ is recursive function}\}$ is index set
- ► $\{\langle 0 \rangle, \langle 1 \rangle\} \cup \{\langle 2, n, i \rangle \mid 1 \leqslant i \leqslant n\}$ is no index set

Rice's Theorem

non-trivial index sets are not recursive

non-trivial index sets are not recursive

Proof

▶ let A be non-trivial index set

non-trivial index sets are not recursive

Proof

▶ let *A* be non-trivial index set and let $d \in A$ and $e \notin A$

non-trivial index sets are not recursive

- ▶ let *A* be non-trivial index set and let $d \in A$ and $e \notin A$
- ► suppose *A* is recursive

non-trivial index sets are not recursive

- ▶ let *A* be non-trivial index set and let $d \in A$ and $e \notin A$
- ► suppose *A* is recursive

► function *f* defined by
$$f(x) = \begin{cases} e & \text{if } x \in A \\ d & \text{if } x \notin A \end{cases}$$
 is recursive

non-trivial index sets are not recursive

- ▶ let A be non-trivial index set and let $d \in A$ and $e \notin A$
- suppose A is recursive
 function f defined by f(x) = $\begin{cases}
 e & \text{if } x \in A \\
 d & \text{if } x \notin A
 \end{cases}$ is recursive
- ▶ fixed point theorem $\implies \exists a \text{ such that } \varphi_a \simeq \varphi_{f(a)}$

non-trivial index sets are not recursive

- ▶ let A be non-trivial index set and let $d \in A$ and $e \notin A$
- suppose A is recursive
 function f defined by f(x) = $\begin{cases}
 e & \text{if } x \in A \\
 d & \text{if } x \notin A
 \end{cases}$ is recursive
- fixed point theorem $\implies \exists a \text{ such that } \varphi_a \simeq \varphi_{f(a)}$

$$a \in A$$

 $a \notin A$

non-trivial index sets are not recursive

- ▶ let A be non-trivial index set and let $d \in A$ and $e \notin A$
- suppose A is recursive
 function f defined by f(x) = $\begin{cases}
 e & \text{if } x \in A \\
 d & \text{if } x \notin A
 \end{cases}$ is recursive
- fixed point theorem $\implies \exists a \text{ such that } \varphi_a \simeq \varphi_{f(a)}$

$$a \in A \implies f(a) \in A$$

 $a \notin A \implies f(a) \notin A$

non-trivial index sets are not recursive

- ▶ let A be non-trivial index set and let $d \in A$ and $e \notin A$
- suppose A is recursive
 function f defined by f(x) = $\begin{cases}
 e & \text{if } x \in A \\
 d & \text{if } x \notin A
 \end{cases}$ is recursive
- fixed point theorem $\implies \exists a \text{ such that } \varphi_a \simeq \varphi_{f(a)}$

$$a \in A \implies f(a) \in A \implies e \in A$$

 $a \notin A \implies f(a) \notin A \implies d \notin A$

non-trivial index sets are not recursive

- ▶ let A be non-trivial index set and let $d \in A$ and $e \notin A$
- suppose A is recursive
 function f defined by f(x) = $\begin{cases}
 e & \text{if } x \in A \\
 d & \text{if } x \notin A
 \end{cases}$ is recursive
- fixed point theorem $\implies \exists a \text{ such that } \varphi_a \simeq \varphi_{f(a)}$

$$a \in A \implies f(a) \in A \implies e \in A$$

 $a \notin A \implies f(a) \notin A \implies d \notin A$

set $A \subseteq \mathbb{N}$ is recursively enumerable if $A = \emptyset$ or A is range of unary recursive function

set $A \subseteq \mathbb{N}$ is recursively enumerable if $A = \emptyset$ or A is range of unary recursive function

Remark		
other terminology:	semi-decidable	computably enumerable
set $A \subseteq \mathbb{N}$ is recursively enumerable if $A = \emptyset$ or A is range of unary recursive function

Remark				
other terminology:	semi-decidable	computably enumerable		
Lemma				
set A is recursive if and only if A and $\mathbb{N} \setminus A$ are recursively enumerable				

set $A \subseteq \mathbb{N}$ is recursively enumerable if $A = \emptyset$ or A is range of unary recursive function

Remark		
other terminology:	semi-decidable	computably enumerable

Lemma

set A is recursive if and only if A and $\mathbb{N} \setminus A$ are recursively enumerable

Theorem

following statements are equivalent for any set $A \subseteq \mathbb{N}$:

- **1** *A* is recursively enumerable
- 2 A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- **1** A is recursively enumerable
- 2 A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

• $A = \emptyset$ or A is range of unary recursive function

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- $A = \emptyset$ or A is range of unary recursive function
- \varnothing is domain of unary partial recursive function $f(x) = (\mu y) (x + 1 = 0)$

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- $A = \emptyset$ or A is range of unary recursive function f
- \varnothing is domain of unary partial recursive function $f(x) = (\mu y) (x + 1 = 0)$
- define unary function $g(x) = (\mu y) (f(y) = x)$

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- $A = \emptyset$ or A is range of unary recursive function f
- \varnothing is domain of unary partial recursive function $f(x) = (\mu y) (x + 1 = 0)$
- define unary function $g(x) = (\mu y) (f(y) = x)$
- ▶ g is partial recursive

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- $A = \emptyset$ or A is range of unary recursive function f
- \varnothing is domain of unary partial recursive function $f(x) = (\mu y) (x + 1 = 0)$
- define unary function $g(x) = (\mu y) (f(y) = x)$
- ▶ g is partial recursive
- domain of g is A

- **1** A is recursively enumerable
- 2 A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

▶ suppose A is domain of unary partial recursive function φ_e

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is domain of unary partial recursive function φ_e
- define unary function $f(x) = x + z(\varphi_e(x))$

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is domain of unary partial recursive function φ_e
- define unary function $f(x) = x + z(\varphi_e(x))$
- ► f is partial recursive

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is domain of unary partial recursive function φ_e
- define unary function $f(x) = x + z(\varphi_e(x))$
- f is partial recursive
- $\blacktriangleright \varphi_e(x) \downarrow \iff f(x) \downarrow$

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is domain of unary partial recursive function φ_e
- define unary function $f(x) = x + z(\varphi_e(x))$
- ► f is partial recursive
- $\blacktriangleright \ \varphi_e(x) \downarrow \ \iff \ f(x) \downarrow \ \implies \ f(x) = x$

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is domain of unary partial recursive function φ_e
- define unary function $f(x) = x + z(\varphi_e(x))$
- f is partial recursive
- $\blacktriangleright \ \varphi_e(x) \downarrow \ \iff \ f(x) \downarrow \ \implies \ f(x) = x$
- range of f is A

- **1** A is recursively enumerable
- 2 A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- **8** A is domain of unary partial recursive function

▶ suppose A is range of unary partial recursive function φ_e

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- if $A = \emptyset$ then A is recursively enumerable

- A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- if $A = \emptyset$ then A is recursively enumerable

suppose $A \neq \emptyset$ and let $a \in A$

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- f and g are recursive

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- f and g are recursive
- claim: range of g is A

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- if A = Ø then A is recursively enumerable suppose A ≠ Ø and let a ∈ A
 define f(x,s) = $\begin{cases}
 \varphi_e(x) & \text{if } (\exists y < s) T_1(e, x, y) \\
 a & \text{otherwise}
 \end{cases}$ and g(x) = f(π₁(x), π₂(x))
 - ► f and g are recursive
 - ▶ claim: range of g is A
 - $z \in A \implies z = \varphi_e(x)$ for some x

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- ► f and g are recursive
- ► claim: range of g is A
- ► $z \in A \implies z = \varphi_e(x)$ for some $x \implies \mathsf{T}_1(e, x, y)$ for some y

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- ► f and g are recursive
- ▶ claim: range of g is A
- ► $z \in A \implies z = \varphi_e(x)$ for some $x \implies \mathsf{T}_1(e, x, y)$ for some y
- f(x,s) = z for any s > y

- **1** A is recursively enumerable
- A is range of unary partial recursive function
- 8 A is domain of unary partial recursive function

- suppose A is range of unary partial recursive function φ_e
- ► f and g are recursive
- ▶ claim: range of g is A
- ► $z \in A \implies z = \varphi_e(x)$ for some $x \implies \mathsf{T}_1(e, x, y)$ for some y
- $\blacktriangleright \ f(x,s) = z \text{ for any } s > y \quad \Longrightarrow \quad g(\pi(x,s)) = z \text{ for any } s > y$

every non-empty recursively enumerable set $A \subseteq \mathbb{N}$ is range of primitive recursive function

every non-empty recursively enumerable set $A \subseteq \mathbb{N}$ is range of primitive recursive function

Proof

► A is range of unary recursive function f

every non-empty recursively enumerable set $A \subseteq \mathbb{N}$ is range of primitive recursive function

- ► A is range of unary recursive function f
- let e be index of f and let a be arbitrary element of A

every non-empty recursively enumerable set $A \subseteq \mathbb{N}$ is range of primitive recursive function

Proof

- ► A is range of unary recursive function f
- ▶ let *e* be index of *f* and let *a* be arbitrary element of *A*
- function

$$g(x) = egin{cases} \mathsf{u}((x)_1) & ext{if } \mathsf{T}_1(e,(x)_0,(x)_1) \ a & ext{otherwise} \end{cases}$$

is primitive recursive

every non-empty recursively enumerable set $A \subseteq \mathbb{N}$ is range of primitive recursive function

Proof

- ► A is range of unary recursive function f
- ▶ let *e* be index of *f* and let *a* be arbitrary element of *A*
- function

$$g(x) = egin{cases} \mathsf{u}((x)_1) & ext{if } \mathsf{T}_1(e,(x)_0,(x)_1) \ a & ext{otherwise} \end{cases}$$

is primitive recursive

range of g is A

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive and Recursive Enumerable Sets

3. Diophantine Sets

- 4. Fibonacci Numbers
- 5. Summary

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

$$\models \{x \mid x \text{ is even}\}$$

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

► {x | x is even}

$$P(x,y)=x-2y$$

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

- ► {x | x is even}
- ► $\{x^2 \mid x \in \mathbb{N}\}$

$$P(x,y)=x-2y$$
Definition

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

- ► {x | x is even}
- ► $\{x^2 \mid x \in \mathbb{N}\}$

$$P(x, y) = x - 2y$$
$$P(x, y) = x - y^2$$

Definition

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

	{ <i>X</i>	<i>x</i>	is	even	}
--	------------	----------	----	------	---

▶
$$\{x^2 \mid x \in \mathbb{N}\}$$

► Internet

$$P(x,y) = x - 2y$$

 $P(x,y) = x - y^2$
 $P(x,y,z) = x - (y+2)(z+2)$

Definition

set $A \subseteq \mathbb{N}$ is diophantine if \exists polynomial $P(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0$$

Examples

- ► {x | x is even}
- $\blacktriangleright \{x^2 \mid x \in \mathbb{N}\}$
- { $x \ge 1 | x$ is composite}

$$P(x,y) = x - 2y$$

$$P(x,y) = x - y^{2}$$

$$P(x,y,z) = x - (y+2)(z+2)$$

diophantine sets are recursively enumerable

diophantine sets are recursively enumerable

Proof

► arbitrary diophantine set A

diophantine sets are recursively enumerable

Proof

• arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$

diophantine sets are recursively enumerable

- arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$
- function $\varphi(x) = (\mu y) (P(x, (y)_1, \dots, (y)_n)^2 = 0)$

diophantine sets are recursively enumerable

- arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$
- function $\varphi(x) = (\mu y) (P(x, (y)_1, \dots, (y)_n)^2 = 0)$ is partial recursive

diophantine sets are recursively enumerable

- arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$
- ▶ function $\varphi(x) = (\mu y) (P(x, (y)_1, ..., (y)_n)^2 = 0)$ is partial recursive
- $\blacktriangleright \ x \in A \quad \Longleftrightarrow \quad \varphi(x) \downarrow$

diophantine sets are recursively enumerable

Proof

- arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$
- ▶ function $\varphi(x) = (\mu y) (P(x, (y)_1, ..., (y)_n)^2 = 0)$ is partial recursive
- $\blacktriangleright \ x \in A \quad \Longleftrightarrow \quad \varphi(x) \downarrow$

Theorem (Matiyasevich 1970)

recursively enumerable sets are diophantine

diophantine sets are recursively enumerable

Proof

- arbitrary diophantine set $A = \{x \mid \exists y_1 \cdots \exists y_n P(x, y_1, \dots, y_n) = 0\}$
- ▶ function $\varphi(x) = (\mu y) (P(x, (y)_1, ..., (y)_n)^2 = 0)$ is partial recursive
- $\blacktriangleright \ x \in A \quad \Longleftrightarrow \quad \varphi(x) \downarrow$

Theorem (Matiyasevich 1970)

recursively enumerable sets are diophantine

Corollary (MRDP Theorem)

Hilbert's 10th problem is unsolvable

A is recursively enumerable \iff $A = \{P(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{N} \text{ and } P(x_1, \ldots, x_n) \ge 0\}$ for some polynomial $P(x_1, \ldots, x_n)$ with integer coefficients

A is recursively enumerable \iff $A = \{P(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{N} \text{ and } P(x_1, \ldots, x_n) \ge 0\}$ for some polynomial $P(x_1, \ldots, x_n)$ with integer coefficients

$$\iff x \in A \quad \iff \quad \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

A is recursively enumerable \iff $A = \{P(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{N} \text{ and } P(x_1, \ldots, x_n) \ge 0\}$ for some polynomial $P(x_1, \ldots, x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

A is recursively enumerable \iff $A = \{P(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{N} \text{ and } P(x_1, \ldots, x_n) \ge 0\}$ for some polynomial $P(x_1, \ldots, x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

A is recursively enumerable \iff $A = \{P(x_1, ..., x_n) \mid x_1, ..., x_n \in \mathbb{N} \text{ and } P(x_1, ..., x_n) \ge 0\}$ for some polynomial $P(x_1, ..., x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

define $P(x, y_1, ..., y_n) = x - (x + 1) (Q(x, y_1, ..., y_n))^2$

 $\{P(x, y_1, \ldots, y_n) \mid x, y_1, \ldots, y_n \in \mathbb{N} \text{ and } P(x, y_1, \ldots, y_n) \ge 0\}$

A is recursively enumerable \iff $A = \{P(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{N} \text{ and } P(x_1, \ldots, x_n) \ge 0\}$ for some polynomial $P(x_1, \ldots, x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

$$\{P(x,y_1,\ldots,y_n) \mid x,y_1,\ldots,y_n \in \mathbb{N} \text{ and } P(x,y_1,\ldots,y_n) \ge 0\}$$

= $\{P(x,y_1,\ldots,y_n) \mid x,y_1,\ldots,y_n \in \mathbb{N} \text{ and } Q(x,y_1,\ldots,y_n) = 0\}$

A is recursively enumerable \iff $A = \{P(x_1, ..., x_n) \mid x_1, ..., x_n \in \mathbb{N} \text{ and } P(x_1, ..., x_n) \ge 0\}$ for some polynomial $P(x_1, ..., x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

$$\{P(x, y_1, \dots, y_n) \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } P(x, y_1, \dots, y_n) \ge 0\} \\= \{P(x, y_1, \dots, y_n) \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } Q(x, y_1, \dots, y_n) = 0\} \\= \{x \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } Q(x, y_1, \dots, y_n) = 0\}$$

A is recursively enumerable \iff $A = \{P(x_1, ..., x_n) \mid x_1, ..., x_n \in \mathbb{N} \text{ and } P(x_1, ..., x_n) \ge 0\}$ for some polynomial $P(x_1, ..., x_n)$ with integer coefficients

Proof

$$\iff x \in A \quad \iff \exists x_1 \cdots \exists x_n \quad P(x_1, \ldots, x_n) - x = 0$$

 $\implies \exists$ polynomial $Q(x, y_1, \dots, y_n)$ with integer coefficients such that

$$x \in A \quad \iff \quad \exists y_1 \cdots \exists y_n \quad Q(x, y_1, \dots, y_n) = 0$$

$$\{P(x, y_1, \dots, y_n) \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } P(x, y_1, \dots, y_n) \ge 0\} \\= \{P(x, y_1, \dots, y_n) \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } Q(x, y_1, \dots, y_n) = 0\} \\= \{x \mid x, y_1, \dots, y_n \in \mathbb{N} \text{ and } Q(x, y_1, \dots, y_n) = 0\} = A$$

Example

polynomial $P(a, b, \ldots, z)$:

$$k+2) \left(1 - (wz+h+j-q)^2 - ((gk+2g+k+1)(h+j)+h-z)^2 - (2n+p+q+z-e)^2 - ((a^2-1)y^2+1-x^2)^2 - (16(k+1)^3(k+2)(n+1)^2+1-f^2)^2 - (n+l+v-y)^2 - (16r^2y^4(a^2-1)+1-u^2)^2 - (e^3(e+2)(a+1)^2+1-o^2)^2 - (((a+u^2(u^2-a))^2-1)(n+4dy)^2+1 - (x+cu)^2)^2 - ((a^2-1)l^2+1-m^2)^2 - (ai+k+1-l-i)^2 - (p+l(a-n-1)+b(2an+2a-n^2-2n-2)-m)^2 - (z+pl(a-p)+t(2ap-p^2-1)-pm)^2 - (q+y(a-p-1)+s(2ap+2a-p^2-2p-2)-x)^2 \right)$$

Example (Jones, Sato, Wada, Wiens 1976)

polynomial $P(a, b, \ldots, z)$:

$$(k+2) \left(1 - (wz+h+j-q)^2 - ((gk+2g+k+1)(h+j)+h-z)^2 - (2n+p+q+z-e)^2 - ((a^2-1)y^2+1-x^2)^2 - (16(k+1)^3(k+2)(n+1)^2+1-f^2)^2 - (n+l+v-y)^2 - (16r^2y^4(a^2-1)+1-u^2)^2 - (e^3(e+2)(a+1)^2+1-o^2)^2 - (((a+u^2(u^2-a))^2-1)(n+4dy)^2+1-(x+cu)^2)^2 - ((a^2-1)l^2+1-m^2)^2 - (ai+k+1-l-i)^2 - ((a^2-1)l^2+1-m^2)^2 - (ai+k+1-l-i)^2 - (p+l(a-n-1)+b(2an+2a-n^2-2n-2)-m)^2 - (z+pl(a-p)+t(2ap-p^2-1)-pm)^2 - (q+y(a-p-1)+s(2ap+2a-p^2-2p-2)-x)^2 \right)$$

generates all prime numbers

Outline

- **1. Summary of Previous Lecture**
- 2. Recursive and Recursive Enumerable Sets
- 3. Diophantine Sets

4. Fibonacci Numbers

5. Summary

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

Theorem (Jones 1975)

 $P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

Theorem (Jones 1975)

 $P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

demo

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

Lemma 🕦

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

Lemma 🕕

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof induction on i ▶ i = 0 ▶ i = 1 ▶ i > 1

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

induction on *i*

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0$$

▶ *i* > 1

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

induction on *i*

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0$$

▶ *i* > 1

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \geqslant 0$

Proof

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0$$

•
$$i = 1 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 1 - 1$$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0$$

•
$$i = 1 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 1 - 1 = -1 = (-1)^1$$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0$$

►
$$i = 1$$
 \implies $F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 1 - 1 = -1 = (-1)^1$

►
$$i > 1 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (F_{i-1} + F_i)^2 - (F_{i-1} + F_i)F_i - F_i^2$$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \ge 0$

Proof

•
$$i = 0 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0$$

•
$$i = 1 \implies F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 1 - 1 = -1 = (-1)^1$$

►
$$i > 1$$
 \implies $F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (F_{i-1} + F_i)^2 - (F_{i-1} + F_i)F_i - F_i^2 = -F_i^2 + F_{i-1}^2 + F_iF_{i-1}$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \geqslant 0$

Proof

$$\begin{array}{ll} \bullet \ i = 0 & \implies & F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 0 - 0 = 1 = (-1)^0 \\ \bullet \ i = 1 & \implies & F_{i+1}^2 - F_{i+1}F_i - F_i^2 = 1 - 1 - 1 = -1 = (-1)^1 \\ \bullet \ i > 1 & \implies & F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (F_{i-1} + F_i)^2 - (F_{i-1} + F_i)F_i - F_i^2 = -F_i^2 + F_{i-1}^2 + F_iF_{i-1} \\ & = -(F_i^2 - F_iF_{i-1} - F_{i-1}^2) \end{array}$$

$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \geqslant 0$

Proof
$$F_0 = 0$$
 $F_1 = 1$ $F_{n+2} = F_n + F_{n+1}$

Lemma 🕕

$$F_{i+1}^2 - F_{i+1}F_i - F_i^2 = (-1)^i$$
 for all $i \geqslant 0$

Proof

$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$ and $y = F_{2i+1}$ for some $i \ge 0$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

- ► *x* = 0
- ► x > 0

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

- $\blacktriangleright x = 0 \implies y = 1$
- ► x > 0

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

- $x = 0 \implies y = 1 \implies i = 0$
- ► x > 0

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

induction on x

 $\blacktriangleright x > 0 \implies yx + x^2 > y$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

induction on x

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

 $(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

induction on x

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

 $(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \le x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \le x^2 + yx + 1 = y^2 \implies y > x$$

 $y^2 = yx + x^2 + 1$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leqslant x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 = yx + x^2 + 1 \leq yx + x^2 + x = yx + (x + 1)x$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2 \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x + 1)x \leq yx + yx = 2yx$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leqslant x^2 + yx + 1 = y^2 \implies y > x$$
$$y^2 = yx + x^2 + 1 \leqslant yx + x^2 + x = yx + (x+1)x \leqslant yx + yx = 2yx \implies y \leqslant 2x$$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^{2} = x^{2} + 2x + 1 \leq x^{2} + yx + 1 = y^{2} \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 = yx + x^2 + 1 \leq yx + x^2 + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 = yx + x^2 + 1 \leq yx + x^2 + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^{2} = x^{2} + 2x + 1 \leq x^{2} + yx + 1 = y^{2} \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^{2} - ba - a^{2} = (y - x)^{2} - (y - x)(2x - y) - (2x - y)^{2}$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^{2} = x^{2} + 2x + 1 \leq x^{2} + yx + 1 = y^{2} \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^{2} - ba - a^{2} = (y - x)^{2} - (y - x)(2x - y) - (2x - y)^{2} = y^{2} - yx - x^{2} = 1$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^{2} = x^{2} + 2x + 1 \leq x^{2} + yx + 1 = y^{2} \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^{2} - ba - a^{2} = (y - x)^{2} - (y - x)(2x - y) - (2x - y)^{2} = y^{2} - yx - x^{2} = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ by induction hypothesis

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^{2} = x^{2} + 2x + 1 \leq x^{2} + yx + 1 = y^{2} \implies y > x$$

$$y^{2} = yx + x^{2} + 1 \leq yx + x^{2} + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^{2} - ba - a^{2} = (y - x)^{2} - (y - x)(2x - y) - (2x - y)^{2} = y^{2} - yx - x^{2} = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ by induction hypothesis
 $x = a + b$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 = yx + x^2 + 1 \leq yx + x^2 + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^2 - ba - a^2 = (y - x)^2 - (y - x)(2x - y) - (2x - y)^2 = y^2 - yx - x^2 = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ by induction hypothesis
 $x = a + b$ and $y = b + x$

$$y^2 - yx - x^2 = 1 \land x, y \ge 0 \implies x = F_{2i}$$
 and $y = F_{2i+1}$ for some $i \ge 0$

Proof

$$\blacktriangleright x > 0 \implies yx + x^2 > y \implies 1 = y^2 - (yx + x^2) < y^2 - y \implies y \ge 2$$

$$(x+1)^2 = x^2 + 2x + 1 \leq x^2 + yx + 1 = y^2 \implies y > x$$

$$y^2 = yx + x^2 + 1 \leq yx + x^2 + x = yx + (x+1)x \leq yx + yx = 2yx \implies y \leq 2x$$

let $a = 2x - y$ and $b = y - x \implies 0 \leq a < x$ and $0 < b$
 $b^2 - ba - a^2 = (y - x)^2 - (y - x)(2x - y) - (2x - y)^2 = y^2 - yx - x^2 = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ by induction hypothesis
 $x = a + b$ and $y = b + x \implies x = F_{2(i+1)}$ and $y = F_{2(i+1)+1}$

$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

► *x* ≤ *y*

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

- ► *x* ≤ *y*
 - let a = y x and b = x

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

► x ≤ y

```
let a = y - x and b = x
```

```
a \ge 0 and b \ge 0
```

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

► $x \leq y$ let a = y - x and b = x $a \geq 0$ and $b \geq 0$ $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2$

► *y* < *x*

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

► *x* ≤ *y*

let a = y - x and b = x $a \ge 0$ and $b \ge 0$ $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$

► *y* < *x*

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

- ► $x \leq y$ let a = y - x and b = x $a \geq 0$ and $b \geq 0$ $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$ $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma 2
- ► *y* < *x*

Lemma 🕄

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

•
$$x \leq y$$

let $a = y - x$ and $b = x$
 $a \geq 0$ and $b \geq 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma ②
 $x = F_{2i+1}$

► *y* < *x*

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

•
$$x \le y$$

let $a = y - x$ and $b = x$
 $a \ge 0$ and $b \ge 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \ge 0$ according to lemma ②
 $x = F_{2i+1}$ and $y = a + x = F_{2i+2}$

► *y* < *x*

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1}$$
 and $y = F_{2i+2}$ for some $i \ge 0$

Proof

case analysis

▶
$$x \leq y$$

let $a = y - x$ and $b = x$
 $a \geq 0$ and $b \geq 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma ②
 $x = F_{2i+1}$ and $y = a + x = F_{2i+2}$
> $y < x \implies yx = y^2 - x^2 + 1 \leq 0$

Lemma 🕄

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

▶
$$x \leq y$$

let $a = y - x$ and $b = x$
 $a \geq 0$ and $b \geq 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma ②
 $x = F_{2i+1}$ and $y = a + x = F_{2i+2}$
▶ $y < x \implies yx = y^2 - x^2 + 1 \leq 0 \implies yx = 0$
Lemma 🕄

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

▶
$$x \leq y$$

let $a = y - x$ and $b = x$
 $a \geq 0$ and $b \geq 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma
 $x = F_{2i+1}$ and $y = a + x = F_{2i+2}$
▶ $y < x \implies yx = y^2 - x^2 + 1 \leq 0 \implies yx = 0 \implies y = 0$

Lemma 3

$$y^2 - yx - x^2 = -1 \land x \ge 0 \land y > 0 \implies x = F_{2i+1} \text{ and } y = F_{2i+2} \text{ for some } i \ge 0$$

Proof

case analysis

▶
$$x \leq y$$

let $a = y - x$ and $b = x$
 $a \geq 0$ and $b \geq 0$
 $b^2 - ba - a^2 = x^2 - x(y - x) - (y - x)^2 = -(y^2 - yx - x^2) = 1$
 $a = F_{2i}$ and $b = F_{2i+1}$ for some $i \geq 0$ according to lemma
 $x = F_{2i+1}$ and $y = a + x = F_{2i+2}$
> $y < x \implies yx = y^2 - x^2 + 1 \leq 0 \implies yx = 0 \implies y = 0$

Corollary 1

$\{x \ge 0 \mid y^2 - yx - x^2 = \pm 1 \text{ for some } y > 0\}$ is set of Fibonacci numbers

Corollary 1

$$\{x \ge 0 \mid y^2 - yx - x^2 = \pm 1 \text{ for some } y > 0\}$$
 is set of Fibonacci numbers

Corollary 2

 $\{x \ge 0 \mid (y^2 - yx - x^2)^2 - 1 = 0 \text{ for some } y > 0\}$ is set of Fibonacci numbers

Corollary 1

$$\{x \ge 0 \mid y^2 - yx - x^2 = \pm 1 \text{ for some } y > 0\}$$
 is set of Fibonacci numbers

Corollary 2

 $\{x \ge 0 \mid (y^2 - yx - x^2)^2 - 1 = 0 \text{ for some } y \ge 0\}$ is set of Fibonacci numbers

Corollary

set of Fibonacci numbers is diophantine

$$y > 0 \land x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$$

Lemma 🕘

$y > 0 \ \land \ x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$

Proof case analysis ► *x* = 0 ► x > 0

$$y > 0 \land x \ge 0 \implies y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$\bullet \ x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

► x > 0

$$y > 0 \ \land \ x \geqslant 0 \quad \Longrightarrow \quad y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$\bullet \ x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

► x > 0

$$4(y^2 - yx - x^2) = (2y - x)^2 - 5x^2$$

$$y > 0 \land x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

$$4(y^{2} - yx - x^{2}) = (2y - x)^{2} - 5x^{2}$$
$$(2y - x)^{2} - 5x^{2} = 0 \implies \sqrt{5} = \frac{|2y - x|}{x}$$

$$y > 0 \land x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

$$4(y^{2} - yx - x^{2}) = (2y - x)^{2} - 5x^{2}$$
$$(2y - x)^{2} - 5x^{2} = 0 \implies \sqrt{5} = \frac{|2y - x|}{x}$$

$$y > 0 \land x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$\bullet \ x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

$$4(y^{2} - yx - x^{2}) = (2y - x)^{2} - 5x^{2}$$
$$(2y - x)^{2} - 5x^{2} = 0 \implies \sqrt{5} = \frac{|2y - x|}{x}$$
$$(2y - x)^{2} - 5x^{2} \neq 0$$

$$y > 0 \land x \geqslant 0 \implies y^2 - yx - x^2 \neq 0$$

Proof

case analysis

$$\bullet \ x = 0 \quad \Longrightarrow \quad y^2 - yx - x^2 = y^2 > 0$$

$$4(y^{2} - yx - x^{2}) = (2y - x)^{2} - 5x^{2}$$
$$(2y - x)^{2} - 5x^{2} = 0 \implies \sqrt{5} = \frac{|2y - x|}{x}$$
$$(2y - x)^{2} - 5x^{2} \neq 0 \implies y^{2} - yx - x^{2} \neq 0$$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

► x is Fibonacci number

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

 $y = F_{i+1}$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1$$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1$$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

• z = P(x, y) > 0 for some $x, y \ge 0$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

- ► *y* = 0
- ▶ *y* > 0

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

►
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

- $\blacktriangleright y = 0 \implies z = x(2-x^4)$
- ► y > 0

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

•
$$y = 0 \implies z = x(2 - x^4) \implies x = 1$$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

•
$$y = 0 \implies z = x(2 - x^4) \implies x = 1 \implies x$$
 is Fibonacci number
• $y > 0$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

•
$$y > 0 \implies y^2 - yx - x^2 \neq 0$$
 by lemma 4

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$V = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

•
$$y > 0 \implies y^2 - yx - x^2 \neq 0$$
 by lemma $\bigcirc \implies 0 < (y^2 - yx - x^2)^2$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

•
$$y > 0 \implies y^2 - yx - x^2 \neq 0$$
 by lemma $\bigcirc \implies 0 < (y^2 - yx - x^2)^2 < 2$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

►
$$y > 0 \implies y^2 - yx - x^2 \neq 0$$
 by lemma ④ $\implies 0 < (y^2 - yx - x^2)^2 < 2$
 $(y^2 - yx - x^2)^2 = 1$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$Y = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

►
$$y > 0 \implies y^2 - yx - x^2 \neq 0$$
 by lemma (4) $\implies 0 < (y^2 - yx - x^2)^2 < 2$
 $(y^2 - yx - x^2)^2 = 1 \implies z = x$

set of Fibonacci numbers equals non-negative values of $P(x, y) = x(2 - (y^2 - yx - x^2)^2)$

Proof

two directions

• x is Fibonacci number $\implies x = F_i$ for some $i \ge 0$

$$V = F_{i+1} \implies (y^2 - yx - x^2)^2 = 1 \implies 2 - (y^2 - yx - x^2)^2 = 1 \implies P(x,y) = x$$

•
$$z = P(x,y) > 0$$
 for some $x, y \ge 0 \implies z = x(2 - (y^2 - yx - x^2)^2)$

two cases

• $y = 0 \implies z = x(2 - x^4) \implies x = 1 \implies x$ is Fibonacci number

►
$$y > 0$$
 \implies $y^2 - yx - x^2 \neq 0$ by lemma (4) \implies $0 < (y^2 - yx - x^2)^2 < 2$

 $(y^2 - yx - x^2)^2 = 1 \implies z = x \implies z$ is Fibonacci number by corollary 2

$P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

 $P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

Proof

$$2x + 2y^{3}x^{2} + y^{2}x^{3} - 2yx^{4} - x^{5} - y^{4}x = x(2 - (y^{2} - yx - x^{2})^{2})$$

 $P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

Proof

$$2x + 2y^{3}x^{2} + y^{2}x^{3} - 2yx^{4} - x^{5} - y^{4}x = x(2 - (y^{2} - yx - x^{2})^{2})$$

Remark

P(2,2) = -28

 $P(x,y) = 2x + 2y^3x^2 + y^2x^3 - 2yx^4 - x^5 - y^4x$ generates set of Fibonacci numbers

Proof

$$2x + 2y^{3}x^{2} + y^{2}x^{3} - 2yx^{4} - x^{5} - y^{4}x = x(2 - (y^{2} - yx - x^{2})^{2})$$

Remark

P(2,2) = -28

Theorem

there exists no polynomial $Q(x_1, \ldots, x_n)$ such that

$$\{Q(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \ge 0\}$$

is set of Fibonacci numbers
Outline

- **1. Summary of Previous Lecture**
- 2. Recursive and Recursive Enumerable Sets
- 3. Diophantine Sets
- 4. Fibonacci Numbers
- 5. Summary

Important Concepts

- diophantine set
- Fibonacci numbers
- index set

- recursive set
- recursive enumerable set
- recursive separable sets

Important Concepts

- diophantine set
- Fibonacci numbers
- index set

- recursive set
- recursive enumerable set
- recursive separable sets

homework for November 13