

WS 2023 lecture 9

Computability Theory

Aart Middeldorp

Definition (Parallel Reduction)

▶ $t \oplus t$ for all $t \in \{S, K, I\} \cup V$

▶ It \Rightarrow t Ktu \Rightarrow t Stuv \Rightarrow tv(uv) for all CL-terms t, u, v

 $\blacktriangleright \ t_1 \, t_2 \, \not \, \mapsto \, u_1 \, u_2 \ \text{if} \ t_1 \, \not \, \mapsto \, u_1 \ \text{and} \ t_2 \, \not \, \mapsto \, u_2 \quad \text{for all CL-terms} \ t_1, t_2, u_1, u_2$

Lemmata

 ${\color{red} \blacktriangleright} \ \rightarrow \subseteq \ {\color{red} + \!\!\!\!+} \ {\color{gray} \subseteq} \ {\color{red} \rightarrow}^*$

▶

→ has diamond property

Corollary

CL is confluent

Outline

- 1. Summary of Previous Lecture
- 2. Strategies
- 3. Normalization Theorem
- 4. CL-Representability
- 5. Summary

universität WS 2023 Computability Theory lecture 9

Definition

ARS $\mathcal{A} = \langle \mathbf{A},
ightarrow
angle$ has \mathbf{Z} property if

$$a \rightarrow b \implies b \rightarrow^* \bullet (a) \rightarrow^* \bullet (b)$$

a•* b•

for some function • on A

Lemma (Monotonicity)

 $a \to^* b \implies a^{ullet} \to^* b^{ullet}$ for every ARS $\langle A, \to \rangle$ with Z property for ullet

Definition

functions ♦ and ★ on CL-terms:

$$t^{\diamond} = \begin{cases} u^{\diamond} \star v^{\diamond} & \text{if } t = u v \\ t & \text{otherwise} \end{cases}$$

$$s \star t = \begin{cases} ut(vt) & \text{if } s = Suv \\ u & \text{if } s = Ku \\ t & \text{if } s = I \\ st & \text{otherwise} \end{cases}$$

Lemma

every ARS with Z property is confluent

Theorem

CL has Z property for ⋄

Definition

recursion combinator is combinator R such that

$$R \times y \circ O \leftrightarrow^* X$$

$$R \times y \underline{n+1} \leftrightarrow^* y \underline{n} (R \times y \underline{n})$$

Lemma

if R is recursion combinator then

$$F = \langle z y_1 \dots y_n \rangle (R (G y_1 \dots y_n) \langle u v \rangle (H v u y_1 \dots y_n) z)$$

represents primitive recursive function f based on g and h

WS 2023 Computability Theory lecture 9

Definitions

 $D = \langle x y z \rangle (z (K y) x) = C(BC(B(CI)K))$

 $Q = \langle xy \rangle (D (succ (y 0)) (x (y 0) (y 1)))$

 $\mathbf{R} = \langle xyz \rangle (z(\mathbf{Q}y)(\mathbf{D}0x)1)$

Lemmata

- \triangleright Dxy0 \rightarrow + x
- \triangleright D x y n \rightarrow ⁺ y for all n > 0
- \triangleright Q \times (\triangleright n y) \rightarrow ⁺ \triangleright n+1 (\times n y)
- R is recursion combinator

Lemma

CL-representable functions are closed under minimization

WS 2023 Computability Theory lecture 9

(pairing combinator)

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem,

Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Outline

- 1. Summary of Previous Lecture
- 2. Strategies
- 3. Normalization Theorem
- 4. CL-Representability
- 5. Summary

Definitions

- (many-step) strategy S for ARS $A = \langle A, \rightarrow \rangle$ is relation \rightarrow_S such that
 - ① $\rightarrow_{\mathcal{S}} \subseteq \rightarrow^+$
 - ② $NF(\rightarrow_{\mathcal{S}}) = NF(\mathcal{A})$
- ▶ one-step strategy satisfies $\rightarrow_{\mathcal{S}} \subseteq \rightarrow$
- strategy S is deterministic if a = b whenever $a \in A \hookrightarrow A \subset B$
- \triangleright strategy \mathcal{S} for ARS \mathcal{A} is normalizing if every normalizing element is \mathcal{S} -terminating
- ▶ strategy S for ARS A is hyper–normalizing if every normalizing element is terminating with respect to $\to^* \cdot \to_S \cdot \to^*$

Lemma

hyper–normalization ⇒ normalization

universität WS 2023 Computability Theory lecture 9 2. Strategi-

Theorem

 S_{\bullet} is normalizing strategy for every ARS with Z property for \bullet

Proof (cont'd)

- ① $a \rightarrow^n b$ and $n > 0 \implies b \rightarrow^* \bullet^n(a)$
- ② $a \rightarrow e^{n} e^{n}$ (a) for all $n \ge 0$ by induction on n
 - $ightharpoonup n = 0 \implies a = \bullet^n(a)$
- 3 $a \rightarrow^n b$ with n > 0 and $b \in NF(\rightarrow)$
 - $a op ^{\leqslant n} \bullet^n(a) ^* \leftarrow b \implies a op ^{\leqslant n} b \implies \mathcal{S}_{\bullet}$ is normalizing

Theorem

 \mathcal{S}_{\bullet} is hyper–normalizing strategy for every ARS with Z property for \bullet

Definition

strategy S_{\bullet} for ARS A with Z property for \bullet : $a \to b$ if $a \notin NF(A)$ and $b = a^{\bullet}$

Theorem

 S_{\bullet} is normalizing for every ARS with Z property for \bullet

Proof

① $a \rightarrow^n b$ and $n > 0 \implies b \rightarrow^* \bullet^n(a)$ by induction on n:

$$a \rightarrow c \rightarrow^{n-1} b \implies c \rightarrow^* \bullet (a)$$
 (Z property)

- \triangleright $n=1 \implies b=c$
- ▶ n > 1 \implies $b \rightarrow^* \bullet^{n-1}(c)$ (induction hypothesis)
- $ullet^{n-1}(c)
 ightharpoonup^* ullet^n(a) \implies b
 ightharpoonup^* ullet^n(a)$
- (n-1) applications of monotonicity)
- universität WS 2023 Computability Theory lecture 9 2. Strategi

Theorem

 \mathcal{S}_{ullet} is hyper–normalizing strategy for every ARS with Z property for ullet

Proof (sketch)

- - ▶ suppose $a \rightarrow^* b \rightarrow c$
 - ▶ $b \notin NF$ $\implies a \notin NF$ $\implies a • (a) <math>\rightarrow *$ (b) = c (monotonicity)
- 2 \mathcal{S}_{\bullet} is normalizing strategy $\implies \mathcal{S}_{\bullet}$ is hyper–normalizing strategy

Outline

- 1. Summary of Previous Lecture
- 2. Strategies
- 3. Normalization Theorem
- 4. CL-Representability
- 5. Summary

WS 2023 Computability Theory lecture 9

Definition

- ▶ root reduction $\stackrel{\epsilon}{\longrightarrow}$: It $\stackrel{\epsilon}{\longrightarrow}$ t Ktu $\stackrel{\epsilon}{\longrightarrow}$ t Stuv $\stackrel{\epsilon}{\longrightarrow}$ tv(uv)
- ▶ leftmost outermost reduction $\xrightarrow{\text{lo}}$:

$$\frac{t \xrightarrow{\epsilon} u}{t \xrightarrow{lo} u} \qquad \frac{t \xrightarrow{lo} u \quad t \, v \in \mathsf{NF}(\xrightarrow{\epsilon})}{t \, v \xrightarrow{lo} u \, v} \qquad \frac{t \xrightarrow{lo} u \quad v \, t \in \mathsf{NF}(\xrightarrow{\epsilon})}{v \, t \xrightarrow{lo} v \, u} \qquad v \in \mathsf{NF}(\xrightarrow{\epsilon})$$

for all CL-terms t, u, v

Example

Definition

 $t \xrightarrow{\neg lo} u$ if $t \rightarrow u$ but not $t \xrightarrow{lo} u$

Example

Theorem (Factorization)

$$\to^* \subseteq \xrightarrow{\mathsf{lo}}^* \cdot \xrightarrow{\neg \mathsf{lo}}^*$$

Theorem

leftmost outermost reduction is normalizing

Proof

- ▶ assume $t \to u$ $\implies t \xrightarrow{\log} u \to u$ by factorization
- u is normal form $\implies v \xrightarrow{\neg lo} u$ is impossible $\implies t \xrightarrow{lo}^* u$

Theorem

leftmost outermost reduction is hyper-normalizing

Proof

infinite reduction

$$t \xrightarrow{\neg lo}^* \cdot \xrightarrow{lo} \cdot \xrightarrow{\neg lo}^* \cdot \xrightarrow{lo} \cdot \xrightarrow{\neg lo}^* \cdots$$

gives rise to infinite $\xrightarrow{10}$ reduction starting from t by factorization

Example

combinator SII(SII) is not normalizing:

$$\mathsf{SII}(\mathsf{SII}) \, \xrightarrow{\, \mathsf{lo} \,} \, \mathsf{I}(\mathsf{SII})(\mathsf{I}(\mathsf{SII})) \, \xrightarrow{\, \mathsf{lo} \,} \, \mathsf{SII}(\mathsf{I}(\mathsf{SII})) \, \longrightarrow \, \mathsf{SII}(\mathsf{SII})$$

Definition

$$T = \langle x \rangle (D \ \underline{0} \ (\langle u \, v \rangle (u \ (x \ (succ \ v)) \ u \ (succ \ v)))) \qquad P = \langle x \, y \rangle (T \ x \ (x \ y) \ (T \ x) \ y)$$

Lemma

$$P \times y \leftrightarrow^* \begin{cases} y & \text{if } x \ y \to^* \ \underline{0} \\ P \times (\text{succ } y) & \text{if } x \ y \to^* \ \underline{n+1} \end{cases}$$

Proof

- $ightharpoonup P x y \rightarrow^* D 0 (\langle u v \rangle (u (x (succ v)) u (succ v))) (x y) (T x) y$
- $\triangleright xy \rightarrow^* 0 \implies Pxy \rightarrow^* 0 (Tx)y \rightarrow^* y$

WS 2023 Computability Theory lecture 9

► $x y \rightarrow^* n + 1 \implies P x y \rightarrow^* (\langle u v \rangle (u (x (succ v))) u (succ v))) (T x) y$ $\rightarrow^* T x (x (succ y)) (T x) (succ y) \leftrightarrow^* P x (succ y)$

Outline

- 1. Summary of Previous Lecture
- 2. Strategies
- 3. Normalization Theorem
- 4. CL-Representability
- 5. Summary

Theorem

partial recursive functions are CL-representable by combinators in normal form

Proof

partial recursive function $\varphi(x_1,\ldots,x_n)\simeq \mathsf{u}((\mu\,i)\,(g(x_1,\ldots,x_n,i)=0))$ with primitive recursive functions u and g that are represented by combinators U and G

- $ightharpoonup F_1 = \langle x_1 \cdots x_n \rangle (U(P(G x_1 \cdots x_n) 0))$
- $ightharpoonup F_2 = \langle x_1 \cdots x_n \rangle (P(G x_1 \cdots x_n)) \cap (F_1 x_1 \cdots x_n))$ represents φ
- $ightharpoonup A = G x_1 \cdots x_n$ and $B = F_1 x_1 \cdots x_n$
- ightharpoonup case 1: $\varphi(x_1,\ldots,x_n)\downarrow$

$$\varphi(x_1,...,x_n) = u(y) \text{ for } y = (\mu i) (g(x_1,...,x_n,i) = 0)$$

$$F_{2} \underline{x_{1}} \cdots \underline{x_{n}} \rightarrow^{*} PA \underline{0} IB \leftrightarrow^{*} PA \underline{y} IB \leftrightarrow^{*} \underline{y} IB \rightarrow^{*} I^{y}B \rightarrow^{*} B$$

$$\rightarrow^{*} U (PA \underline{0}) \leftrightarrow^{*} U y \rightarrow^{*} u(y) = \varphi(x_{1}, \dots, x_{n})$$

Proof (cont'd)

partial recursive function $\varphi(x_1,\ldots,x_n)\simeq \mathrm{u}((\mu\,i)\,(g(x_1,\ldots,x_n,i)=0))$ with primitive recursive functions u and g that are represented by U and G

- $F_1 = \langle x_1 \cdots x_n \rangle (U (P (G x_1 \cdots x_n) 0))$
- $F_2 = \langle x_1 \cdots x_n \rangle (P(G x_1 \cdots x_n) \underline{0} | (F_1 x_1 \cdots x_n)) \text{ represents } \varphi$
- $ightharpoonup A = G x_1 \cdots x_n$ and $B = F_1 x_1 \cdots x_n$
- ▶ case 2: $\varphi(x_1,\ldots,x_n)\uparrow$

$$F_{2} \underbrace{x_{1}} \cdots \underbrace{x_{n}} \rightarrow^{*} PA \underbrace{0} \mid B \rightarrow^{*} TA (A \underbrace{0}) (TA) \underbrace{0} \mid B \rightarrow^{*} TA \underbrace{m+1} (TA) \underbrace{0} \mid B$$

$$\rightarrow^{*} D \underbrace{0} (\langle uv \rangle (u (A (\operatorname{succ} v)) u (\operatorname{succ} v))) \underbrace{m+1} (TA) \underbrace{0} \mid B$$

$$\rightarrow^{*} \langle uv \rangle (u (A (\operatorname{succ} v)) u (\operatorname{succ} v)) (TA) \underbrace{0} \mid B$$

$$\rightarrow^{*} TA (A (\operatorname{succ} \underbrace{0})) (TA) (\operatorname{succ} \underbrace{0}) \mid B$$

$$\rightarrow^{*} TA (A 1) (TA) 1 \mid B \rightarrow^{*} \cdots \rightarrow^{*} TA (A 2) (TA) 2 \mid B \rightarrow^{*} \cdots$$

contains \xrightarrow{lo} step \implies $F_2 x_1 \cdots x_n$ has no normal form by hyper–normalization of \xrightarrow{lo}

universität innsbruck

5 2023 Computability Theory

lecture 9

4. CL-Representabil

21/2

root reduction

▶ S.

strategy

Important Concepts

- $\stackrel{\epsilon}{\longrightarrow}$ hyper-normalization
- ▶ normalization
- ▶ ¬lo → leftmost oute
 - leftmost outermost reduction
- ▶ deterministic
 ▶ normalization theorem
 ▶ T
- ► factorization ► P

homework for December 4

universität WS 2023 Computability Theory lecture 9 5. Summary

Outline

- 1. Summary of Previous Lecture
- 2. Strategies
- 3. Normalization Theorem
- 4. CL-Representability
- 5. Summary

Universität WS 2023 Computability Theory Jecture 9 5 Summary

22/23