
WS 2023 lecture 9

Computability Theory

Aart Middeldorp

Outline
1. Summary of Previous Lecture

2. Strategies

3. Normalization Theorem

4. CL–Representability

5. Summary

WS 2023 Computability Theory lecture 9 2/23

Definition (Parallel Reduction)

▶ t −→∥ t for all t ∈ {S,K, I} ∪ V

▶ I t −→∥ t K t u −→∥ t S t u v −→∥ t v (u v) for all CL–terms t, u, v

▶ t1 t2 −→∥ u1 u2 if t1 −→∥ u1 and t2 −→∥ u2 for all CL–terms t1, t2, u1, u2

Lemmata

▶ → ⊆ −→∥ ⊆ →∗

▶ −→∥ has diamond property

Corollary

CL is confluent
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Definition

ARS A = ⟨A,→⟩ has Z property if

a → b =⇒ b →∗ •(a) →∗ •(b)

for some function • on A

a b

a• b•

∗

∗

Lemma (Monotonicity)

a →∗ b =⇒ a• →∗ b• for every ARS ⟨A,→⟩ with Z property for •

Definition

functions ⋄ and ⋆ on CL–terms:

t⋄ =

{
u⋄ ⋆ v⋄ if t = u v

t otherwise
s ⋆ t =


u t (v t) if s = Su v

u if s = Ku

t if s = I

st otherwise
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami


Lemma

every ARS with Z property is confluent

Theorem

CL has Z property for ⋄

Definition

recursion combinator is combinator R such that

R x y 0 ↔∗ x R x y n+ 1 ↔∗ y n (R x y n)

Lemma

if R is recursion combinator then

F = ⟨z y1 . . . yn ⟩(R (Gy1 · · · yn) ⟨u v⟩(H v u y1 · · · yn) z)

represents primitive recursive function f based on g and h
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Definitions

D = ⟨x y z⟩(z (K y) x) = C(BC(B(CI)K)) (pairing combinator)

Q = ⟨x y⟩(D (succ (y 0)) (x (y 0) (y 1)))

R = ⟨x y z⟩(z (Q y) (D 0 x) 1)

Lemmata

▶ D x y 0 →+ x

▶ D x y n →+ y for all n > 0

▶ Q x (D n y) →+ D n+ 1 (x n y)

▶ R is recursion combinator

Lemma

CL–representable functions are closed under minimization
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Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .
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Definitions

▶ (many-step) strategy S for ARS A = ⟨A,→⟩ is relation →S such that

1 →S ⊆ →+

2 NF(→S) = NF(A)
▶ one-step strategy satisfies →S ⊆ →

▶ strategy S is deterministic if a = b whenever a S← · →S b

▶ strategy S for ARS A is normalizing if every normalizing element is S –terminating

▶ strategy S for ARS A is hyper–normalizing if every normalizing element is terminating

with respect to →∗ · →S · →∗

Lemma

hyper–normalization =⇒ normalization
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Definition

strategy S• for ARS A with Z property for •: a •−→ b if a /∈ NF(A) and b = a•

Theorem

S• is normalizing for every ARS with Z property for •

Proof

1 a →n b and n > 0 =⇒ b →∗ •n(a) by induction on n:

a → c →n−1 b =⇒ c →∗ •(a) (Z property)

▶ n = 1 =⇒ b = c

▶ n > 1 =⇒ b →∗ •n−1(c) (induction hypothesis)

•n−1(c) →∗ •n(a) =⇒ b →∗ •n(a) (n− 1 applications of monotonicity)
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Theorem

S• is normalizing strategy for every ARS with Z property for •

Proof (cont’d)

1 a →n b and n > 0 =⇒ b →∗ •n(a)

2 a •−→⩽n •n(a) for all n ⩾ 0 by induction on n

▶ n = 0 =⇒ a = •n(a)
▶ n > 0 =⇒ a •−→⩽n−1 •n−1(a) •−→= •n−1(a)• = •n(a) (induction hypothesis)

3 a →n b with n > 0 and b ∈ NF(→)

a •−→⩽n •n(a) ∗← b =⇒ a •−→⩽n b =⇒ S• is normalizing

Theorem

S• is hyper–normalizing strategy for every ARS with Z property for •
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Theorem

S• is hyper–normalizing strategy for every ARS with Z property for •

Proof (sketch)

1 →∗ · •−→ ⊆ •−→ · →∗

▶ suppose a →∗ b •−→ c

▶ b /∈ NF =⇒ a /∈ NF =⇒ a •−→ •(a) →∗ •(b) = c (monotonicity)

2 S• is normalizing strategy =⇒ S• is hyper–normalizing strategy
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Definition

▶ root reduction ϵ−→: I t ϵ−→ t K t u ϵ−→ t S t u v ϵ−→ t v (u v)

▶ leftmost outermost reduction lo−→:

t ϵ−→ u

t lo−→ u

t lo−→ u t v ∈ NF( ϵ−→)

t v lo−→ u v

t lo−→ u v t ∈ NF( ϵ−→) v ∈ NF(→)

v t lo−→ v u

for all CL–terms t, u, v

Example

KI(IS) ϵ−→ I

KI(IS) lo−→ I KI(IS)I ∈ NF( ϵ−→)

KI(IS)I lo−→ II K(KI(IS)I) ∈ NF( ϵ−→) K ∈ NF(→)

K(KI(IS)I) lo−→ K(II)
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Definition

t ¬ lo−−→ u if t → u but not t lo−→ u

Example

SSSSSSSS lo−−→ SS(SS)SSSS lo−−→ SS(SSS)SSS lo−−→ SS(SSSS)SS
¬ lo−−→ SS(SS(SS))SS lo−−→ SS(SS(SS)S)S ¬ lo−−→ SS(SS(SSS))S

lo−−→ SS(SS(SSS)S) lo−−→ SS(SS(SSSS)) lo−−→ SS(SS(SS(SS)))

Theorem (Factorization)

→∗ ⊆ lo−→∗ · ¬ lo−−→∗
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Theorem

leftmost outermost reduction is normalizing

Proof

▶ assume t →! u =⇒ t lo−→∗ · ¬ lo−−→∗ u by factorization

▶ u is normal form =⇒ v ¬ lo−−→ u is impossible =⇒ t lo−→∗ u

Theorem

leftmost outermost reduction is hyper–normalizing

Proof

infinite reduction
t ¬ lo−−→∗ · lo−→ · ¬ lo−−→∗ · lo−→ · ¬ lo−−→∗ · · ·

gives rise to infinite lo−→ reduction starting from t by factorization
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Example

combinator SII(SII) is not normalizing:

SII(SII) lo−→ I(SII)(I(SII)) lo−→ SII(I(SII)) −→ SII(SII)
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Definition

T = ⟨x⟩(D 0 (⟨u v⟩(u (x (succ v)) u (succ v)))) P = ⟨x y⟩(T x (x y) (T x) y)

Lemma

P x y ↔∗

{
y if x y →∗ 0

P x (succ y) if x y →∗ n+ 1

Proof

▶ P x y →∗ D 0 (⟨u v⟩(u (x (succ v)) u (succ v))) (x y) (T x) y

▶ x y →∗ 0 =⇒ P x y →∗ 0 (T x) y →∗ y

▶ x y →∗ n+ 1 =⇒ P x y →∗ (⟨u v⟩(u (x (succ v)) u (succ v))) (T x) y

→∗ T x (x (succ y)) (T x) (succ y) ↔∗ P x (succ y)
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Theorem

partial recursive functions are CL–representable by combinators in normal form

Proof

partial recursive function φ(x1, . . . , xn) ≃ u((µ i) (g(x1, . . . , xn, i) = 0))

with primitive recursive functions u and g that are represented by combinators U and G

▶ F1 = ⟨x1 · · · xn ⟩(U (P (G x1 · · · xn) 0))

▶ F2 = ⟨x1 · · · xn ⟩(P (G x1 · · · xn) 0 I (F1 x1 · · · xn)) represents φ

▶ A = G x1 · · · xn and B = F1 x1 · · · xn
▶ case 1: φ(x1, . . . , xn)↓

φ(x1, . . . , xn) = u(y) for y = (µ i) (g(x1, . . . , xn, i) = 0)

F2 x1 · · · xn →∗ P A 0 I B ↔∗ P A y I B ↔∗ y I B →∗ Iy B →∗ B

→∗ U (P A 0) ↔∗ U y →∗ u(y) = φ(x1, . . . , xn)
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Proof (cont’d)

partial recursive function φ(x1, . . . , xn) ≃ u((µ i) (g(x1, . . . , xn, i) = 0))

with primitive recursive functions u and g that are represented by U and G

▶ F1 = ⟨x1 · · · xn ⟩(U (P (G x1 · · · xn) 0))

▶ F2 = ⟨x1 · · · xn ⟩(P (G x1 · · · xn) 0 I (F1 x1 · · · xn)) represents φ

▶ A = G x1 · · · xn and B = F1 x1 · · · xn
▶ case 2: φ(x1, . . . , xn)↑

F2 x1 · · · xn →∗ P A 0 I B →∗ T A (A 0) (T A) 0 I B →∗ T A m+ 1 (T A) 0 I B

→∗ D 0 (⟨u v⟩(u (A (succ v)) u (succ v))) m+ 1 (T A) 0 I B

→∗ ⟨u v⟩(u (A (succ v)) u (succ v)) (T A) 0 I B

→∗ T A (A (succ 0)) (T A) (succ 0) I B

→∗ T A (A 1) (T A) 1 I B →∗ · · · →∗ T A (A 2) (T A) 2 I B →∗ · · ·

contains lo−→ step =⇒ F2 x1 · · · xn has no normal form by hyper–normalization of lo−→
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Important Concepts

▶
ϵ−→

▶
lo−→

▶
¬ lo−−→

▶ deterministic

▶ factorization

▶ hyper–normalization

▶ normalization

▶ leftmost outermost reduction

▶ normalization theorem

▶ P

▶ root reduction

▶ S•
▶ strategy

▶ T

homework for December 4
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