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Definitions

▶ (many-step) strategy S for ARS A = ⟨A,→⟩ is relation →S on A such that →S ⊆ →+ and
NF(→S) = NF(A)

▶ one-step strategy satisfies →S ⊆ →
▶ strategy S is deterministic if a = b whenever a S← · →S b

▶ strategy S for ARS A is normalizing if every normalizing element is S –terminating

▶ strategy S for ARS A is hyper–normalizing if every normalizing element is terminating

with respect to →∗ · →S · →∗

▶ strategy S• for ARS A with Z property for • : a •−→ b if a /∈ NF(A) and b = a•

▶ root reduction ϵ−→: I t ϵ−→ t K t u ϵ−→ t S t u v ϵ−→ t v (u v)

▶ leftmost outermost reduction lo−→:

t ϵ−→ u

t lo−→ u

t lo−→ u t v ∈ NF( ϵ−→)

t v lo−→ u v

t lo−→ u v t ∈ NF( ϵ−→) v ∈ NF(→)

v t lo−→ v u

▶ t ¬ lo−−→ u if t → u but not t lo−→ u
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Theorem

S• is hyper–normalizing for every ARS with Z property for •

Theorem (Factorization)

→∗ ⊆ lo−→∗ · ¬ lo−−→∗

Normalization Theorem

leftmost outermost reduction is hyper–normalizing

Theorem

partial recursive functions are CL–representable by combinators in normal form
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Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .
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Theorem

function φ is partial recursive ⇐⇒ φ is CL–representable

Remark (Hindley and Seldin, CUP 2008)

The main theorem of this chapter will be that every partial recursive function can be
represented in both λ and CL .

The converse is also true, that every function representable in λ or CL is partial recursive.
But its proof is too boring to include in this book .
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Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩

g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)
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I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧

[ [
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
] ]
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Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000
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[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI)

= ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩

= 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26



Definition

▶ function dec : N→ N

dec(x) =


0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last( (µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]
))
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Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝
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Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof

(by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}
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Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅

▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �
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Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable
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Definition (Types)

▶ infinite set V of type variables

▶ set C of type constants

▶ set T of types is defined inductively:

▶ V ⊆ T

▶ C ⊆ T

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Notation

▶ outermost parentheses are omitted

▶ → is right-associative: ρ→ σ → τ stands for ρ→ (σ → τ)
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Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ

K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ

, τ , ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ
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Example 1

⊢ SKK : σ → σ for all types σ

S : (σ → (σ → σ)→ σ)→ (σ → σ → σ)→ σ → σ K : σ → (σ → σ)→ σ

SK : (σ → σ → σ)→ σ → σ K : σ → σ → σ

SKK : σ → σ

Example 2

x : σ → τ, y : σ ⊢ Kx Iy : τ

K : (σ → τ)→ (ρ→ ρ)→ σ → τ x : σ → τ

Kx : (ρ→ ρ)→ σ → τ I : ρ→ ρ

Kx I : σ → τ y : σ

Kx Iy : τ
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Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ
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Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ
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if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ
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Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2

=⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis =⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ
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Important Concepts

▶ ⌜t⌝

▶ arithmetization

▶ C

▶ conversion–closed

▶ dec(n)

▶ enc(n)

▶ Γ ⊢ t : τ
▶ g(t)

▶ Gödel number

▶ recursive separability

▶ SN

▶ subject reduction

▶ T

▶ TA

▶ type

▶ type assignment

▶ type constant

▶ V

homework for December 11
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