
WS 2023 lecture 10

Computability Theory

Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 2/26

Definitions

▶ (many-step) strategy S for ARS A = ⟨A,→⟩ is relation →S on A such that →S ⊆ →+ and
NF(→S) = NF(A)

▶ one-step strategy satisfies →S ⊆ →
▶ strategy S is deterministic if a = b whenever a S← · →S b

▶ strategy S for ARS A is normalizing if every normalizing element is S –terminating

▶ strategy S for ARS A is hyper–normalizing if every normalizing element is terminating

with respect to →∗ · →S · →∗

▶ strategy S• for ARS A with Z property for • : a •−→ b if a /∈ NF(A) and b = a•

▶ root reduction ϵ−→: I t ϵ−→ t K t u ϵ−→ t S t u v ϵ−→ t v (u v)

▶ leftmost outermost reduction lo−→:

t ϵ−→ u

t lo−→ u

t lo−→ u t v ∈ NF(ϵ−→)

t v lo−→ u v

t lo−→ u v t ∈ NF(ϵ−→) v ∈ NF(→)

v t lo−→ v u

▶ t ¬ lo−−→ u if t → u but not t lo−→ u

WS 2023 Computability Theory lecture 10 1. Summary of Previous Lecture 3/26

Theorem

S• is hyper–normalizing for every ARS with Z property for •

Theorem (Factorization)

→∗ ⊆ lo−→∗ · ¬ lo−−→∗

Normalization Theorem

leftmost outermost reduction is hyper–normalizing

Theorem

partial recursive functions are CL–representable by combinators in normal form

WS 2023 Computability Theory lecture 10 1. Summary of Previous Lecture 4/26

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 10 1. Summary of Previous Lecture Topics 5/26

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 10 1. Summary of Previous Lecture Topics 5/26

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 2. Arithmetization 6/26

Theorem

function φ is partial recursive ⇐⇒ φ is CL–representable

Remark (Hindley and Seldin, CUP 2008)

The main theorem of this chapter will be that every partial recursive function can be
represented in both λ and CL .

The converse is also true, that every function representable in λ or CL is partial recursive.
But its proof is too boring to include in this book .

WS 2023 Computability Theory lecture 10 2. Arithmetization 7/26

Theorem

function φ is partial recursive ⇐⇒ φ is CL–representable

Remark (Hindley and Seldin, CUP 2008)

The main theorem of this chapter will be that every partial recursive function can be
represented in both λ and CL .

The converse is also true, that every function representable in λ or CL is partial recursive.
But its proof is too boring to include in this book .

WS 2023 Computability Theory lecture 10 2. Arithmetization 7/26

Theorem

function φ is partial recursive ⇐⇒ φ is CL–representable

Remark (Hindley and Seldin, CUP 2008)

The main theorem of this chapter will be that every partial recursive function can be
represented in both λ and CL .

The converse is also true, that every function representable in λ or CL is partial recursive.
But its proof is too boring to include in this book .

WS 2023 Computability Theory lecture 10 2. Arithmetization 7/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩

g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩

g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩

g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩

g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

Definition

Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

I(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 0

K(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 1

S(x) ⇐⇒ seq(x) ∧ len(x) = 1 ∧ (x)1 = 2

A(x) ⇐⇒ triple(x) ∧ (x)1 = 3 ∧ term((x)2) ∧ term((x)3)

V(x) ⇐⇒ seq(x) ∧ len(x) = 2 ∧ (x)1 = 4

term(x) ⇐⇒ I(x) ∨ K(x) ∨ S(x) ∨ A(x) ∨ V(x)

WS 2023 Computability Theory lecture 10 2. Arithmetization 8/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧

[[
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧[[
I((x)2) ∧ (x)3 = y

]

∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧[[
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧[[
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]

∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧[[
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]

∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

I t → t K t u → t S t u v → t v (u v)

t → u

t v → u v

t → u

v t → v u

Definition

predicate step(x, y) is inductively defined:

step(x, y) ⇐⇒ term(x) ∧ term(y) ∧ A(x) ∧[[
I((x)2) ∧ (x)3 = y

]
∨
[

A((x)2) ∧ K((x)2,2) ∧ (x)2,3 = y
]

∨
[

A((x)2) ∧ A((x)2,2) ∧ S((x)2,2,2) ∧ A(y) ∧ A((y)2) ∧ A((y)3) ∧
(x)2,2,3 = (y)2,2 ∧ (x)2,3 = (y)3,2 ∧ (x)3 = (y)2,3 ∧ (x)3 = (y)3,3

]
∨
[

A(y) ∧ step((x)2, (y)2) ∧ (x)3 = (y)3

]
∨
[

A(y) ∧ (x)2 = (y)2 ∧ step((x)3, (y)3)
]]

WS 2023 Computability Theory lecture 10 2. Arithmetization 9/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI)

= ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩

= 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definitions

▶ predicates reduction(x) and conversion(x)

reduction(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1)
]

conversion(x) ⇐⇒ seq(x) ∧ (∀ i < len(x) −̇1)
[

step((x) i, (x) i+1) ∨ step((x) i+1, (x) i)
]

▶ predicates zero(x) and numeral(x)

zero(x) ⇐⇒ A(x) ∧ K((x)2) ∧ I((x)3)

numeral(x) ⇐⇒ zero(x) ∨
[

A(x) ∧ A((x)2) ∧ S((x)2,2) ∧ B((x)2,3) ∧ numeral((x)3)
]

▶ enc(n) = g(n)

Example

enc(0) = g(KI) = ⟨3, ⟨1⟩, ⟨0⟩⟩ = 18375000

WS 2023 Computability Theory lecture 10 2. Arithmetization 10/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))

]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x)

g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))

]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x) g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))

]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x) g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last(

(µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]

))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Definition

▶ function dec : N→ N

dec(x) =

0 if zero(x)

dec((x)3) + 1 if numeral(x) ∧ ¬zero(x)

0 otherwise

Theorem

CL–representable functions are partial recursive

Proof

first(x) = (x)1 last(x) = (x) len(x) g(F x1 · · · xn) = ⟨3, . . . ⟨3, g(F), enc(x1)⟩, . . . enc(xn)⟩

f(x1, . . . , xn) ≃ dec(last((µ i)
[

reduction(i) ∧ first(i) = g(F x1 · · · xn) ∧ numeral(last(i))
]
))

WS 2023 Computability Theory lecture 10 2. Arithmetization 11/26

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 12/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩

is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩

= g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩

= g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u)

= ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x)

is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x)

is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t))

= ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t))

= ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x)))

and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x)))

and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝))

↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝))

↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝)

↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝

= F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Proof

▶ primitive recursive function a(x, y) = ⟨3, x, y⟩ is represented by combinator A

▶ A ⌜t⌝ ⌜u⌝ ↔∗ ⟨3, g(t), g(u)⟩ = g(t u) = ⌜t u⌝

▶ primitive recursive function enc(x) = g(x) is represented by combinator E

▶ E ⌜t⌝ ↔∗ g(g(t)) = ⌜⌜t⌝⌝

▶ Y = ⟨x⟩(F (A x (E x))) and X = Y ⌜Y⌝

▶ X ↔∗ F (A ⌜Y⌝ (E ⌜Y⌝)) ↔∗ F (A ⌜Y⌝ ⌜⌜Y⌝⌝) ↔∗ F ⌜Y ⌜Y⌝⌝ = F ⌜X⌝

WS 2023 Computability Theory lecture 10 3. Second Fixed Point Theorem 13/26

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 4. Undecidability 14/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof

(by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof

(by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof

(by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof

(by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof (by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Definitions

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are

recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

non-empty conversion–closed sets of CL–terms are recursively inseparable

Proof (by contradiction)

▶ non-empty conversion–closed sets T and U of CL–terms

▶ ∃ recursive function f : N→ {0,1} such that

t ∈ T =⇒ f(g(t)) = 0 t ∈ U =⇒ f(g(t)) = 1

▶ V = {t | f(g(t)) = 0}

WS 2023 Computability Theory lecture 10 4. Undecidability 15/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅

▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V

=⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ B

=⇒ X ∈ U =⇒ X /∈ V

X /∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ A

=⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U

=⇒ X /∈ V

X /∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T

=⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V

�

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Proof (cont’d)

▶ T ⊆ V and U ∩ V = ∅
▶ f is represented by F

t ∈ V =⇒ F ⌜t⌝ ↔∗ 0 t /∈ V =⇒ F ⌜t⌝ ↔∗ 1

▶ A ∈ T and B ∈ U

▶ G = ⟨x⟩(zero? (F x) B A))

t ∈ V =⇒ G ⌜t⌝ ↔∗ B t /∈ V =⇒ G ⌜t⌝ ↔∗ A

▶ ∃ X such that G ⌜X⌝ ↔∗ X by fixed point theorem

X ∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ B =⇒ X ∈ U =⇒ X /∈ V

X /∈ V =⇒ X ↔∗ G ⌜X⌝ ↔∗ A =⇒ X ∈ T =⇒ X ∈ V �

WS 2023 Computability Theory lecture 10 4. Undecidability 16/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T}

is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T}

is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable

=⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable

=⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive

: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Theorem

non-trivial conversion–closed sets of CL–terms are not recursive

Proof

▶ non-trivial conversion–closed set T of CL–terms

▶ ∼ T = {t | t /∈ T} is non-empty conversion–closed set of CL–terms

▶ T and ∼ T are recursively inseparable =⇒ T is not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 10 4. Undecidability 17/26

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 5. Typing 18/26

Definition (Types)

▶ infinite set V of type variables

▶ set C of type constants

▶ set T of types is defined inductively:

▶ V ⊆ T

▶ C ⊆ T

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Notation

▶ outermost parentheses are omitted

▶ → is right-associative: ρ→ σ → τ stands for ρ→ (σ → τ)

WS 2023 Computability Theory lecture 10 5. Typing 19/26

Definition (Types)

▶ infinite set V of type variables

▶ set C of type constants

▶ set T of types is defined inductively:

▶ V ⊆ T

▶ C ⊆ T

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Notation

▶ outermost parentheses are omitted

▶ → is right-associative: ρ→ σ → τ stands for ρ→ (σ → τ)

WS 2023 Computability Theory lecture 10 5. Typing 19/26

Definition (Types)

▶ infinite set V of type variables

▶ set C of type constants

▶ set T of types is defined inductively:

▶ V ⊆ T

▶ C ⊆ T

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Notation

▶ outermost parentheses are omitted

▶ → is right-associative: ρ→ σ → τ stands for ρ→ (σ → τ)

WS 2023 Computability Theory lecture 10 5. Typing 19/26

Definition (Types)

▶ infinite set V of type variables

▶ set C of type constants

▶ set T of types is defined inductively:

▶ V ⊆ T

▶ C ⊆ T

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Notation

▶ outermost parentheses are omitted

▶ → is right-associative: ρ→ σ → τ stands for ρ→ (σ → τ)

WS 2023 Computability Theory lecture 10 5. Typing 19/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ

K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ

, τ , ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ

K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ

, τ , ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ

S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ

, ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ , ρ

and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ , ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ)→ (ρ→ σ)→ ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ , ρ and CL–terms t and u

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

WS 2023 Computability Theory lecture 10 5. Typing 20/26

Example 1

⊢ SKK : σ → σ for all types σ

S : (σ → (σ → σ)→ σ)→ (σ → σ → σ)→ σ → σ K : σ → (σ → σ)→ σ

SK : (σ → σ → σ)→ σ → σ K : σ → σ → σ

SKK : σ → σ

Example 2

x : σ → τ, y : σ ⊢ Kx Iy : τ

K : (σ → τ)→ (ρ→ ρ)→ σ → τ x : σ → τ

Kx : (ρ→ ρ)→ σ → τ I : ρ→ ρ

Kx I : σ → τ y : σ

Kx Iy : τ

WS 2023 Computability Theory lecture 10 5. Typing 21/26

Example 1

⊢ SKK : σ → σ for all types σ

S : (σ → (σ → σ)→ σ)→ (σ → σ → σ)→ σ → σ K : σ → (σ → σ)→ σ

SK : (σ → σ → σ)→ σ → σ K : σ → σ → σ

SKK : σ → σ

Example 2

x : σ → τ, y : σ ⊢ Kx Iy : τ

K : (σ → τ)→ (ρ→ ρ)→ σ → τ x : σ → τ

Kx : (ρ→ ρ)→ σ → τ I : ρ→ ρ

Kx I : σ → τ y : σ

Kx Iy : τ

WS 2023 Computability Theory lecture 10 5. Typing 21/26

Example 1

⊢ SKK : σ → σ for all types σ

S : (σ → (σ → σ)→ σ)→ (σ → σ → σ)→ σ → σ K : σ → (σ → σ)→ σ

SK : (σ → σ → σ)→ σ → σ K : σ → σ → σ

SKK : σ → σ

Example 2

x : σ → τ, y : σ ⊢ Kx Iy : τ

K : (σ → τ)→ (ρ→ ρ)→ σ → τ x : σ → τ

Kx : (ρ→ ρ)→ σ → τ I : ρ→ ρ

Kx I : σ → τ y : σ

Kx Iy : τ

WS 2023 Computability Theory lecture 10 5. Typing 21/26

Example 1

⊢ SKK : σ → σ for all types σ

S : (σ → (σ → σ)→ σ)→ (σ → σ → σ)→ σ → σ K : σ → (σ → σ)→ σ

SK : (σ → σ → σ)→ σ → σ K : σ → σ → σ

SKK : σ → σ

Example 2

x : σ → τ, y : σ ⊢ Kx Iy : τ

K : (σ → τ)→ (ρ→ ρ)→ σ → τ x : σ → τ

Kx : (ρ→ ρ)→ σ → τ I : ρ→ ρ

Kx I : σ → τ y : σ

Kx Iy : τ

WS 2023 Computability Theory lecture 10 5. Typing 21/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x

=⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x

=⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I

and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ

=⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ

=⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t

and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t

and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ

=⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2)

and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2)

and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ

=⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Proof

induction on definition of [x]t

1 t = x =⇒ [x]t = I and σ = τ =⇒ ⊢ I : σ → τ =⇒ Γ ⊢ I : σ → τ

2 x /∈ Var(t) =⇒ [x]t = K t and Γ ⊢ t : τ

⊢ K : τ → σ → τ =⇒ Γ ⊢ K t : σ → τ

3 t = t1t2 =⇒ [x]t = S ([x]t1) ([x]t2) and Γ, x : σ ⊢ t1 : τ1 → τ and Γ, x : σ ⊢ t2 : τ1

Γ ⊢ [x]t1 : σ → τ1 → τ and Γ ⊢ [x]t2 : σ → τ1 by induction hypothesis

⊢ S : (σ → τ1 → τ)→ (σ → τ1)→ σ → τ =⇒ Γ ⊢ S([x]t1)([x]t2) : σ → τ

WS 2023 Computability Theory lecture 10 5. Typing 22/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ

=⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ

=⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u

=⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u

=⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ

=⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ

=⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u

=⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u

=⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ

=⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ

=⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ

and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1

=⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1

=⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis

=⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof

1 t = I t1 → t1 = u =⇒ ⊢ I : σ → τ and Γ ⊢ t1 : σ =⇒ σ = τ =⇒ Γ ⊢ u : τ

2 t = K t1t2 → t1 = u =⇒ Γ ⊢ Kt1 : σ → τ and Γ ⊢ t2 : σ

=⇒ ⊢ K : ρ→ σ → τ and Γ ⊢ t1 : ρ =⇒ ρ = τ =⇒ Γ ⊢ u : τ

3 t = S t1t2t3 → t1t3(t2t3) = u =⇒ Γ ⊢ S t1t2 : σ → τ and Γ ⊢ t3 : σ

=⇒ Γ ⊢ S t1 : ρ→ σ → τ and Γ ⊢ t2 : ρ =⇒ ⊢ S : µ→ ρ→ σ → τ and Γ ⊢ t1 : µ

=⇒ ρ = σ → ρ1 and µ = σ → ρ1 → τ =⇒ Γ ⊢ t1t3 : ρ1 → τ and Γ ⊢ t2t3 : ρ1

=⇒ Γ ⊢ u : τ

4 t = t1t2 → u1t2 = u with t1 → u1 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u1 : σ → τ by induction hypothesis =⇒ Γ ⊢ u : τ

WS 2023 Computability Theory lecture 10 5. Typing 23/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2

=⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis =⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 10 5. Typing 24/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis =⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 10 5. Typing 24/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis

=⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 10 5. Typing 24/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis =⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 10 5. Typing 24/26

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Proof (cont’d)

5 t = t1t2 → t1u2 = u with t2 → u2 =⇒ Γ ⊢ t1 : σ → τ and Γ ⊢ t2 : σ

=⇒ Γ ⊢ u2 : σ by induction hypothesis =⇒ Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 10 5. Typing 24/26

Outline
1. Summary of Previous Lecture

2. Arithmetization

3. Second Fixed Point Theorem

4. Undecidability

5. Typing

6. Summary

WS 2023 Computability Theory lecture 10 6. Summary 25/26

Important Concepts

▶ ⌜t⌝

▶ arithmetization

▶ C

▶ conversion–closed

▶ dec(n)

▶ enc(n)

▶ Γ ⊢ t : τ
▶ g(t)

▶ Gödel number

▶ recursive separability

▶ SN

▶ subject reduction

▶ T

▶ TA

▶ type

▶ type assignment

▶ type constant

▶ V

homework for December 11

WS 2023 Computability Theory lecture 10 6. Summary 26/26

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/10.pdf

Important Concepts

▶ ⌜t⌝

▶ arithmetization

▶ C

▶ conversion–closed

▶ dec(n)

▶ enc(n)

▶ Γ ⊢ t : τ
▶ g(t)

▶ Gödel number

▶ recursive separability

▶ SN

▶ subject reduction

▶ T

▶ TA

▶ type

▶ type assignment

▶ type constant

▶ V

homework for December 11

WS 2023 Computability Theory lecture 10 6. Summary 26/26

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/10.pdf

	lecture 10
	Summary of Previous Lecture
	Topics

	Arithmetization
	Second Fixed Point Theorem
	Undecidability
	Typing
	Summary

