

Computability Theory

Aart Middeldorp

- 1. Summary of Previous Lecture
- 2. Arithmetization
- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Definitions

- ▶ (many-step) strategy S for ARS $A = \langle A, \rightarrow \rangle$ is relation \rightarrow_S on A such that $\rightarrow_S \subseteq \rightarrow^+$ and $NF(\rightarrow_S) = NF(A)$
- ▶ one-step strategy satisfies $\rightarrow_{\mathcal{S}} \subseteq \rightarrow$
- ▶ strategy S is deterministic if a = b whenever $a S \leftarrow \cdot \rightarrow S b$
- ightharpoonup strategy ${\cal S}$ for ARS ${\cal A}$ is normalizing if every normalizing element is ${\cal S}$ -terminating
- ▶ strategy S for ARS A is hyper–normalizing if every normalizing element is terminating with respect to $\rightarrow^* \cdot \rightarrow_S \cdot \rightarrow^*$
- ▶ strategy S_{\bullet} for ARS A with Z property for \bullet : $a \to b$ if $a \notin NF(A)$ and $b = a^{\bullet}$
- ▶ root reduction $\stackrel{\epsilon}{\longrightarrow}$: It $\stackrel{\epsilon}{\longrightarrow}$ t Ktu $\stackrel{\epsilon}{\longrightarrow}$ t Stuv $\stackrel{\epsilon}{\longrightarrow}$ t v(uv)
- ▶ leftmost outermost reduction $\xrightarrow{\text{lo}}$:

$$\frac{t\xrightarrow{\epsilon} u}{t\xrightarrow{lo} u} \qquad \frac{t\xrightarrow{lo} u \quad t \, v \in \mathsf{NF}(\xrightarrow{\epsilon})}{t \, v\xrightarrow{lo} u \, v} \qquad \frac{t\xrightarrow{lo} u \quad v \, t \in \mathsf{NF}(\xrightarrow{\epsilon})}{v \, t\xrightarrow{lo} v \, u}$$

 $ightharpoonup t \xrightarrow{\neg lo} u$ if $t \to u$ but not $t \xrightarrow{lo} u$

Theorem

S. is hyper-normalizing for every ARS with Z property for •

Theorem (Factorization)

$$\rightarrow^* \subseteq \xrightarrow{\mathsf{lo}}^* \cdot \xrightarrow{\neg\mathsf{lo}}^*$$

Normalization Theorem

leftmost outermost reduction is hyper-normalizing

Theorem

partial recursive functions are CL-representable by combinators in normal form

WS 2023

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 $\alpha-$ equivalence, abstraction, arithmetization, $\beta-$ reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, $\eta-$ reduction, fixed point theorem, intuitionistic propositional logic, $\lambda-$ definability, normalization theorem, termination, typing, undecidability, Z property, \dots

1. Summary of Previous Lecture

2. Arithmetization

- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Theorem

function φ is partial recursive $\iff \varphi$ is CL-representable

Remark (Hindley and Seldin, CUP 2008)

The main theorem of this chapter will be that every partial recursive function can be represented in both λ and CL.

The converse is also true, that every function representable in λ or CL is partial recursive. But its proof is too boring to include in this book.

Definition

Gödel number of CL-term is defined inductively:

$$\mathfrak{g}(1) = \langle 0 \rangle$$
 $\mathfrak{g}(K) = \langle 1 \rangle$ $\mathfrak{g}(S) = \langle 2 \rangle$ $\mathfrak{g}(t u) = \langle 3, \mathfrak{g}(t), \mathfrak{g}(u) \rangle$ $\mathfrak{g}(x_i) = \langle 4, i \rangle$

Definition

predicates I(x), K(x), S(x), A(x), V(x), term(x) are defined inductively:

$$\begin{array}{lll} \mathsf{I}(x) & \Longleftrightarrow & \mathsf{seq}(x) \land \mathsf{len}(x) = 1 \land (x)_1 = 0 \\ \mathsf{K}(x) & \Longleftrightarrow & \mathsf{seq}(x) \land \mathsf{len}(x) = 1 \land (x)_1 = 1 \end{array}$$

$$\mathsf{S}(x) \iff \mathsf{seq}(x) \land \mathsf{len}(x) = 1 \land (x)_1 = 2$$

$$\mathsf{A}(x) \iff \mathsf{triple}(x) \land (x)_1 = 3 \land \mathsf{term}((x)_2) \land \mathsf{term}((x)_3)$$

$$V(x) \iff seq(x) \land len(x) = 2 \land (x)_1 = 4$$

 $\mathsf{term}(x) \iff \mathsf{I}(x) \vee \mathsf{K}(x) \vee \mathsf{S}(x) \vee \mathsf{A}(x) \vee \mathsf{V}(x)$

 $\overline{lt \rightarrow t}$

 $\overline{\mathsf{K} t u \to t}$

 $\overline{\mathsf{Stuv} \to \mathsf{tv}(\mathsf{uv})}$

 $\frac{t \to u}{t \, v \to u \, v}$

 $\frac{t \to u}{vt \to vu}$

Definition

predicate step(x, y) is inductively defined:

$$\begin{split} \text{step}(x,y) &\iff \text{term}(x) \land \text{term}(y) \land \mathsf{A}(x) \land \\ & \left[\ \, \left[\mathsf{I}((x)_2) \land (x)_3 = y \, \right] \right. \\ & \vee \left[\mathsf{A}((x)_2) \land \mathsf{K}((x)_{2,2}) \land (x)_{2,3} = y \, \right] \\ & \vee \left[\mathsf{A}((x)_2) \land \mathsf{A}((x)_{2,2}) \land \mathsf{S}((x)_{2,2,2}) \land \mathsf{A}(y) \land \mathsf{A}((y)_2) \land \mathsf{A}((y)_3) \land \\ & (x)_{2,2,3} = (y)_{2,2} \land (x)_{2,3} = (y)_{3,2} \land (x)_3 = (y)_{2,3} \land (x)_3 = (y)_{3,3} \, \right] \\ & \vee \left[\mathsf{A}(y) \land \text{step}((x)_2, (y)_2) \land (x)_3 = (y)_3 \, \right] \\ & \vee \left[\mathsf{A}(y) \land (x)_2 = (y)_2 \land \text{step}((x)_3, (y)_3) \, \right] \end{split}$$

WS 2023 Computability Theory

lecture 10

2. Arithmetization

Definitions

predicates reduction(x) and conversion(x)

```
reduction(x) \iff seq(x) \land (\forall i < len(x) - 1) \lceil step((x)_i, (x)_{i+1}) \rceil
\operatorname{conversion}(x) \iff \operatorname{seq}(x) \land (\forall i < \operatorname{len}(x) - 1) \left[ \operatorname{step}((x)_i, (x)_{i+1}) \lor \operatorname{step}((x)_{i+1}, (x)_i) \right]
```

predicates zero(x) and numeral(x)

$$zero(x) \iff A(x) \land K((x)_2) \land I((x)_3)$$

numeral(x) \iff zero(x) \vee $[A(x) \wedge A((x)_2) \wedge S((x)_{2,2}) \wedge B((x)_{2,3}) \wedge numeral((x)_3)]$

ightharpoonup enc(n) = $\mathfrak{g}(n)$

▶
$$\operatorname{enc}(n) = \mathfrak{g}(\underline{n})$$

Example

 $enc(0) = g(KI) = \langle 3, \langle 1 \rangle, \langle 0 \rangle \rangle = 18375000$

Definition

▶ function dec: N → N

$$dec(x) = egin{cases} 0 & \text{if } zero(x) \\ dec((x)_3) + 1 & \text{if } numeral(x) \land \neg zero(x) \\ 0 & \text{otherwise} \end{cases}$$

Theorem

CL-representable functions are partial recursive

Proof

 $first(x) = (x)_1 \quad last(x) = (x)_{len(x)} \quad \mathfrak{g}(Fx_1 \cdots x_n) = \langle 3, \dots \langle 3, \mathfrak{g}(F), enc(x_1) \rangle, \dots enc(x_n) \rangle$ $f(x_1, \dots, x_n) \simeq \operatorname{dec}(\operatorname{last}((\mu i) \lceil \operatorname{reduction}(i) \land \operatorname{first}(i) = \mathfrak{g}(Fx_1 \cdots x_n) \land \operatorname{numeral}(\operatorname{last}(i)) \rceil))$

WS 2023

- 1. Summary of Previous Lecture
- 2. Arithmetization
- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Notation

 $\lceil t \rceil = \mathfrak{g}(t)$ is Church numeral of Gödel number of CL-term t

Theorem

 \forall CL-term $F \exists$ CL-term X such that $F \vdash X \vdash x \mapsto x$

Proof

- ightharpoonup primitive recursive function $a(x,y) = \langle 3,x,y \rangle$ is represented by combinator A
- ightharpoonup primitive recursive function enc(x) = g(x) is represented by combinator E
- ightharpoonup E $\ulcorner t \urcorner \leftrightarrow^* \mathfrak{g}(\mathfrak{g}(t)) = \ulcorner \ulcorner t \urcorner \urcorner$
- $ightharpoonup Y = \langle x \rangle (F (A x (E x))) \text{ and } X = Y \lceil Y \rceil$

- 1. Summary of Previous Lecture
- 2. Arithmetization
- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Definitions

- ▶ sets T and U of CL-terms are recursively separable if $\{g(t) \mid t \in T\}$ and $\{g(u) \mid u \in U\}$ are recursively separable
- \blacktriangleright set T of CL-terms is conversion-closed if $u \in T$ whenever $t \in T$ and $t \leftrightarrow^* u$

Theorem

non-empty conversion-closed sets of CL-terms are recursively inseparable

Proof (by contradiction)

- ▶ non-empty conversion-closed sets T and U of CL-terms
- ▶ \exists recursive function $f: \mathbb{N} \to \{0,1\}$ such that

$$t \in T \implies f(\mathfrak{q}(t)) = 0$$

$$t \in U \implies f(\mathfrak{g}(t)) = 1$$

► $V = \{t \mid f(\mathfrak{g}(t)) = 0\}$

Proof (cont'd)

- ▶ $T \subseteq V$ and $U \cap V = \emptyset$
- ▶ f is represented by F

$$t \in V \implies F \lceil t \rceil \leftrightarrow^* \underline{0}$$

$$t \notin V \implies F \ulcorner t \urcorner \leftrightarrow^* \underline{1}$$

- ▶ $A \in T$ and $B \in U$
- $ightharpoonup G = \langle x \rangle (\text{zero?} (F x) B A))$

$$t \in V \implies G \lceil t \rceil \leftrightarrow^* B$$

$$t \notin V \implies G \lceil t \rceil \leftrightarrow^* A$$

▶ $\exists X$ such that $G \vdash X \vdash A$ by fixed point theorem

$$X \in V \quad \Longrightarrow \quad X \, \leftrightarrow^* \, G \, \ulcorner X \urcorner \, \leftrightarrow^* \, B \quad \Longrightarrow \quad X \in U \quad \Longrightarrow \quad X \notin V$$

$$X \notin V \implies X \leftrightarrow^* G \ulcorner X \urcorner \leftrightarrow^* A \implies X \in T \implies X \in V$$

Theorem

non-trivial conversion-closed sets of CL-terms are not recursive

Proof

- non-trivial conversion-closed set T of CL-terms
- $ightharpoonup \sim T = \{t \mid t \notin T\}$ is non-empty conversion–closed set of CL–terms
- ightharpoonup T and $\sim T$ are recursively inseparable \implies T is not recursive

Corollary

set of normalizing CL-terms is not recursive: decision problem

instance: CL-term t

question: is t normalizing?

is undecidable

- 1. Summary of Previous Lecture
- 2. Arithmetization
- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Definition (Types)

- ▶ infinite set V of type variables
- ▶ set C of type constants
- ▶ set T of types is defined inductively:
 - $ightharpoonup \mathbb{V} \subset \mathbb{T}$
 - $ightharpoonup \mathbb{C} \subset \mathbb{T}$
 - ▶ if σ , $\tau \in \mathbb{T}$ then $(\sigma \to \tau) \in \mathbb{T}$

Notation

- outermost parentheses are omitted
- ightharpoonup ightharpoonup is right-associative: $ho
 ightharpoonup \sigma
 ightharpoonup au$ stands for $ho
 ightharpoonup (\sigma
 ightharpoonup au)$

5. Typing

Definition (Type Assignment, Curry-style)

- \blacktriangleright type assignment formula $t:\tau$ with CL-term t and type τ
- type assignment system TA

$$\overline{\mathsf{I}:\sigma\to\sigma} \qquad \overline{\mathsf{K}:\sigma\to\tau\to\sigma} \qquad \overline{\mathsf{S}:(\rho\to\sigma\to\tau)\to(\rho\to\sigma)\to\rho\to\tau}$$

$$\underline{t:\sigma\to\tau \quad u:\sigma}$$

$$\underline{tu:\tau}$$

for all types σ , τ , ρ and CL-terms t and u

Notation

 $\Gamma \vdash t : \tau$ if $t : \tau$ can be derived in TA from assumptions in Γ

Example 1

 $\vdash \ \mathsf{SKK} : \sigma \to \sigma \ \text{ for all types } \ \sigma$

 $K: \sigma \to \sigma \to \sigma$

 $\mathsf{SKK}:\sigma\to\sigma$

Example 2

$$x : \sigma \to \tau, y : \sigma \vdash \mathsf{Kxl} y : \tau$$

$$\overline{\mathsf{K}:(\sigma\to\tau)\to(\rho\to\rho)\to\sigma\to\tau}$$
 $\mathsf{x}:\sigma\to\tau$

$$\mathsf{K}\mathsf{x}:(\rho\to\rho)\to\sigma\to\tau$$
 $\mathsf{I}:\rho\to\rho$

 $\frac{\mathsf{K}\mathsf{x}\mathsf{I}:\sigma\to\tau\qquad\qquad \mathsf{y}:\sigma}{\mathsf{K}\mathsf{x}\mathsf{I}\mathsf{y}:\tau}$

...., .

Theorem

if $\Gamma, x : \sigma \vdash t : \tau$ and $x \notin Var(\Gamma)$ then $\Gamma \vdash [x]t : \sigma \rightarrow \tau$

Proof

induction on definition of [x]t

- ① $t = x \implies [x]t = I \text{ and } \sigma = \tau \implies \vdash I : \sigma \to \tau \implies \Gamma \vdash I : \sigma \to \tau$
- ② $x \notin \mathcal{V}ar(t) \implies [x]t = Kt \text{ and } \Gamma \vdash t : \tau$ $\vdash K : \tau \to \sigma \to \tau \implies \Gamma \vdash Kt : \sigma \to \tau$

$$\Gamma \vdash [x]t_1 : \sigma \to \tau_1 \to \tau \text{ and } \Gamma \vdash [x]t_2 : \sigma \to \tau_1 \text{ by induction hypothesis}$$
 $\vdash S : (\sigma \to \tau_1 \to \tau) \to (\sigma \to \tau_1) \to \sigma \to \tau \implies \Gamma \vdash S([x]t_1)([x]t_2) : \sigma \to \tau$

Theorem (Subject Reduction)

if $\Gamma \vdash t : \tau$ and $t \rightarrow u$ then $\Gamma \vdash u : \tau$

Proof

$$\textcircled{1} \ \ t = \mathsf{I} \ t_1 \to t_1 = u \quad \Longrightarrow \quad \vdash \mathsf{I} : \sigma \to \tau \ \ \mathsf{and} \ \ \mathsf{\Gamma} \vdash t_1 : \sigma \quad \Longrightarrow \quad \sigma = \tau \quad \Longrightarrow \quad \mathsf{\Gamma} \vdash u : \tau$$

- ② $t = \mathsf{K} t_1 t_2 \to t_1 = u \implies \Gamma \vdash \mathsf{K} t_1 : \sigma \to \tau \text{ and } \Gamma \vdash t_2 : \sigma$ $\implies \vdash \mathsf{K} : \rho \to \sigma \to \tau \text{ and } \Gamma \vdash t_1 : \rho \implies \rho = \tau \implies \Gamma \vdash u : \tau$

 $\Rightarrow \rho = \sigma \rightarrow \rho_1 \text{ and } \mu = \sigma \rightarrow \rho_1 \rightarrow \tau \Rightarrow \Gamma \vdash t_1t_3: \rho_1 \rightarrow \tau \text{ and } \Gamma \vdash t_2t_3: \rho_1 \rightarrow \tau \text{ and } \Gamma \vdash \tau \text{$

- $\Rightarrow \Gamma \vdash \mu : \tau$

Theorem (Subject Reduction)

if $\Gamma \vdash t : \tau$ and $t \rightarrow u$ then $\Gamma \vdash u : \tau$

Proof (cont'd)

(5)
$$t = t_1t_2 \rightarrow t_1u_2 = u$$
 with $t_2 \rightarrow u_2 \implies \Gamma \vdash t_1 : \sigma \rightarrow \tau$ and $\Gamma \vdash t_2 : \sigma \implies \Gamma \vdash u_2 : \sigma$ by induction hypothesis $\implies \Gamma \vdash u : \tau$

Definition

CL-term t with $Var(t) = \{x_1, \dots, x_n\}$ is typable if

$$X_1: \rho_1, \ldots, X_n: \rho_n \vdash t: \tau$$

for some types $\rho_1, \ldots, \rho_n, \tau$

- 1. Summary of Previous Lecture
- 2. Arithmetization
- 3. Second Fixed Point Theorem
- 4. Undecidability
- 5. Typing
- 6. Summary

Important Concepts

- ▶ 「t¬
- arithmetization
- ****
- conversion-closed
- ▶ dec(n)
- ightharpoonup enc(n)

- ightharpoonup $\Gamma \vdash t : \tau$
- ▶ g(t)
- Gödel number
- ► SN
- subject reduction

recursive separability

- T
- ► TA
- typetype assignment
- type constant
- ightharpoons

homework for December 11