

Computability Theory

Aart Middeldorp

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Definitions

► Gödel number of CL-term is defined inductively:

$$\mathfrak{g}(I) = \langle 0 \rangle$$
 $\mathfrak{g}(K) = \langle 1 \rangle$ $\mathfrak{g}(S) = \langle 2 \rangle$ $\mathfrak{g}(tu) = \langle 3, \mathfrak{g}(t), \mathfrak{g}(u) \rangle$ $\mathfrak{g}(x_i) = \langle 4, i \rangle$

- ▶ $\operatorname{enc}(n) = \mathfrak{g}(\underline{n})$
- ▶ sets T and U of CL-terms are recursively separable if $\{g(t) \mid t \in T\}$ and $\{g(u) \mid u \in U\}$ are recursively separable
- \blacktriangleright set T of CL-terms is conversion-closed if $u \in T$ whenever $t \in T$ and $t \leftrightarrow^* u$

Theorem

CL-representable functions are partial recursive

Notation

 $\lceil t \rceil = \mathfrak{g}(t)$ is Church numeral of Gödel number of CL-term t

Theorem

 \forall CL-term F \exists CL-term X such that $F \vdash X \vdash x \mapsto x$

Theorem

- ▶ non-empty conversion-closed sets of CL-terms are recursively inseparable
- non-trivial conversion-closed sets of CL-terms are not recursive

Corollary

set of normalizing CL-terms is not recursive: decision problem

instance: CL-term t

question: is t normalizing?

is undecidable

Definition (Types)

set \mathbb{T} of types is defined inductively:

- $ightharpoonup \mathbb{V} \subseteq \mathbb{T}$ infinite set of type variables
- $ightharpoonup \mathbb{C} \subseteq \mathbb{T}$ type constants
- ▶ if σ , $\tau \in \mathbb{T}$ then $(\sigma \to \tau) \in \mathbb{T}$

Definition (Type Assignment, Curry-style)

- ightharpoonup type assignment formula $t:\tau$ with CL-term t and type τ
- ▶ type assignment system TA

$$\overline{\mathsf{I}: \sigma \to \sigma} \qquad \overline{\mathsf{K}: \sigma \to \tau \to \sigma} \qquad \overline{\mathsf{S}: (\rho \to \sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau}$$

$$\underline{t: \sigma \to \tau \quad u: \sigma}$$

$$\underline{tu: \tau}$$

for all types σ , τ , ρ and CL-terms s and t

Notation

 $\Gamma \vdash t : \tau$ if $t : \tau$ can be derived in TA from assumptions in Γ

Theorem

if Γ , $x : \sigma \vdash t : \tau$ and $x \notin \mathcal{V}ar(\Gamma)$ then $\Gamma \vdash [x]t : \sigma \rightarrow \tau$

Theorem (Subject Reduction)

if $\Gamma \vdash t : \tau$ and $t \rightarrow u$ then $\Gamma \vdash u : \tau$

Definition

CL-term t with $Var(t) = \{x_1, \dots, x_n\}$ is typable if

$$X_1: \rho_1, \ldots, X_n: \rho_n \vdash t: \tau$$

for some types $\rho_1, \ldots, \rho_n, \tau$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

 $\alpha-$ equivalence, abstraction, arithmetization, $\beta-$ reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, $\eta-$ reduction, fixed point theorem, intuitionistic propositional logic, $\lambda-$ definability, normalization theorem, termination, typing, undecidability, Z property, . . .

1. Summary of Previous Lecture

2. Strong Normalization

- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Theorem (Strong Normalization)

typable CL-terms are terminating (SN)

Definition

typable CL-term t is strongly computable (SC) if

- ▶ t has atomic type $\tau \in \mathbb{V} \cup \mathbb{C}$ and is SN
- ▶ t has type $\sigma \rightarrow \tau$ and tu is SC whenever $u : \sigma$ is SC

Lemma 1

for any type $\,\tau\,$

- **1** every term $x u_1 \cdots u_n$ of type τ with variable x and SN terms u_1, \ldots, u_n is SC
- 2 every SC term of type τ is SN

Proof

induction on au

- ightharpoonup base case: au is atomic
 - ① $t = x u_1 \cdots u_n \text{ is SN} \implies t \text{ is SC}$
 - ② $t: \tau \text{ is SC} \implies t \text{ is SN}$
- step case: $\tau = \rho \rightarrow \sigma$
 - ① $v : \rho$ is SC \implies v is SN \implies $x u_1 \cdots u_n v : \sigma$ is SC \implies $x u_1 \cdots u_n : \tau$ is SC
 - ② consider SC term $t : \tau$ and $x : \rho$ with $x \in \mathcal{V} \setminus \mathcal{V}ar(t)$
 - \Rightarrow x is SC \Rightarrow tx is SC \Rightarrow tx is SN \Rightarrow t is SN

Proof

$$K: \sigma \to \tau \to \sigma$$

- $\sigma = \sigma_1 \rightarrow \cdots \rightarrow \sigma_n \rightarrow \theta$ with atomic type θ and $n \geqslant 0$
- ▶ consider arbitrary SC terms $s:\sigma$ $t:\tau$ $u_1:\sigma_1$... $u_n:\sigma_n$
- ightharpoonup s is SC $\implies su_1 \cdots u_n$ is SC $\implies su_1 \cdots u_n$ is SN
- ightharpoonup t is SN
- ▶ K $stu_1 \cdots u_n$ is SN: any infinite reduction starts with

$$\mathsf{K} \mathsf{s} \mathsf{t} \mathsf{u}_1 \ldots \mathsf{u}_n \to^* \mathsf{K} \mathsf{s}' \mathsf{t}' \mathsf{u}'_1 \ldots \mathsf{u}'_n \to \mathsf{s}' \mathsf{u}'_1 \ldots \mathsf{u}'_n \to^* \cdots$$

$$\Longrightarrow \mathsf{s} \mathsf{u}_1 \ldots \mathsf{u}_n \to \mathsf{s}' \mathsf{u}'_1 \ldots \mathsf{u}'_n \to^* \cdots$$

with
$$s \rightarrow^* s'$$
 $t \rightarrow^* t'$ $u_1 \rightarrow^* u'_1$ $u_n \rightarrow^* u'_n$

S and I: homework exercise

Lemma

every typable CL-term is SC

Proof

induction on term t

- ightharpoonup t is SC by lemma 0
- ▶ $t \in \{I, K, S\}$ \implies t is SC by lemma 2
- $ightharpoonup t = t_1 t_2$ \implies t_1 and t_2 are SC by induction hypothesis \implies t is SC

Corollary

typable CL-terms are SN

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Theorem

problem

instance: CL -term t question: is t typable?

is decidable

Definition

principal type of combinator t is any type σ such that

- ① $\vdash t : \sigma$
- 2 if $\vdash t : \tau$ then τ is substitution instance of σ

Example

SKK has principal type $a \rightarrow a$ (where a is type variable)

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables $\,\sigma,\, au,\,
ho)$

$$\overline{\mathsf{I}:\sigma\to\sigma} \qquad \overline{\mathsf{K}:\sigma\to\tau\to\sigma} \qquad \overline{\mathsf{S}:(\rho\to\sigma\to\tau)\to(\rho\to\sigma)\to\rho\to\tau}$$

$$\frac{\mathsf{t}:\sigma\to\tau\quad u:\sigma}{\mathsf{t}u:\tau}$$

and unification algorithm

Example 1

principle type of SKK : $\sigma_1 \rightarrow \sigma_1$

- ightharpoonup SK: $\alpha \to \beta$ K: α
- ightharpoonup S: $\gamma o \delta$ K: γ
- unification problem

$$\alpha \approx \sigma_{1} \to \tau_{1} \to \sigma_{1} \qquad \delta \approx \alpha \to \beta \qquad \gamma \to \delta \approx (\rho_{2} \to \sigma_{2} \to \tau_{2}) \to (\rho_{2} \to \sigma_{2}) \to \rho_{2} \to \tau_{2}$$

$$\gamma \approx \sigma_{3} \to \tau_{3} \to \sigma_{3} \qquad \gamma \approx \rho_{2} \to \sigma_{2} \to \tau_{2} \qquad \delta \approx (\rho_{2} \to \sigma_{2}) \to \rho_{2} \to \tau_{2}$$

$$\alpha \approx \rho_{2} \to \sigma_{2} \qquad \beta \approx \rho_{2} \to \tau_{2} \qquad \rho_{2} \approx \sigma_{1} \qquad \sigma_{2} \approx \tau_{1} \to \sigma_{1} \approx \tau_{3}$$

$$\sigma_{3} \approx \rho_{2} \approx \sigma_{1} \approx \tau_{2} \qquad \tau_{3} \approx \sigma_{2} \qquad \sigma_{3} \approx \tau_{2}$$

▶ mgu

$$\left\{
\begin{array}{lll}
\alpha & \mapsto & \sigma_1 \to \tau_1 \to \sigma_1 & \gamma & \mapsto & \sigma_1 \to (\tau_1 \to \sigma_1) \to \sigma_1 \\
\beta & \mapsto & \sigma_1 \to \sigma_1 & \delta & \mapsto & (\sigma_1 \to \tau_1 \to \sigma_1) \to \sigma_1 \to \sigma_1
\end{array}
\right\}$$

SII cannot be typed

- ▶ SI : $\alpha \rightarrow \beta$ I : α
- ightharpoonup S: $\gamma \to \delta$ I: γ
- unification problem

$$\alpha \approx \sigma_{1} \to \sigma_{1} \qquad \delta \approx \alpha \to \beta \qquad \gamma \to \delta \approx (\rho_{2} \to \sigma_{2} \to \tau_{2}) \to (\rho_{2} \to \sigma_{2}) \to \rho_{2} \to \tau_{2}$$

$$\gamma \approx \sigma_{3} \to \sigma_{3} \qquad \gamma \approx \rho_{2} \to \sigma_{2} \to \tau_{2} \qquad \delta \approx (\rho_{2} \to \sigma_{2}) \to \rho_{2} \to \tau_{2}$$

$$\sigma_{3} \approx \rho_{2} \approx \sigma_{2} \to \tau_{2} \approx \sigma_{1} \approx \sigma_{2}$$

$$\alpha \approx \rho_{2} \to \sigma_{2} \qquad \beta \approx \rho_{2} \to \tau_{2} \qquad \sigma_{1} \approx \rho_{2} \approx \sigma_{2}$$

has no solution

principle type of B = S(KS)K : $(\sigma_4 \rightarrow \tau_4) \rightarrow (\rho_4 \rightarrow \sigma_4) \rightarrow \rho_4 \rightarrow \tau_4$

- ▶ $S(KS) : \alpha \rightarrow \beta$ $K : \alpha$
- ightharpoonup S: $\gamma o \delta$ KS: γ
- $\blacktriangleright \;\; \mathsf{K} : \epsilon \to \eta \quad \; \mathsf{S} : \epsilon$
- unification problem

$$\alpha \approx \sigma_1 \to \tau_1 \to \sigma_1 \qquad \delta \approx \alpha \to \beta \qquad \gamma \to \delta \approx (\rho_2 \to \sigma_2 \to \tau_2) \to (\rho_2 \to \sigma_2) \to \rho_2 \to \tau_2$$
$$\gamma \approx \eta \qquad \epsilon \to \eta \approx \sigma_3 \to \tau_3 \to \sigma_3 \qquad \epsilon \approx (\rho_4 \to \sigma_4 \to \tau_4) \to (\rho_4 \to \sigma_4) \to \rho_4 \to \tau_4$$

▶ mgu

$$\{\beta \mapsto (\sigma_4 \to \tau_4) \to (\rho_4 \to \sigma_4) \to \rho_4 \to \tau_4 \cdots \}$$

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Definition

type τ is inhabited if $\vdash t : \tau$ for some combinator t

Remark

not every type is inhabited

Theorem

problem instance: type τ

question: is τ inhabited? is decidable

WS 2023

$$I: \sigma \to \sigma$$

$$\mathsf{K}:\sigma\to au\to\sigma$$

$$S: (\rho \to \sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau$$

valid formulas in intuitionistic propositional logic

Theorem (Curry-Howard)

type au (without type constants) is inhabited if and only if au is valid formula in implication fragment of intuitionistic propositional logic

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic

Kripke models

- 6. Summary
- 7. Test

Syntax

- ▶ basic connectives \rightarrow ∧ \lor \bot
- derived connectives
 - abbreviates $\varphi \to \bot$
 - abbreviates ot ightarrow ot
 - $\blacktriangleright \varphi \leftrightarrow \psi$ abbreviates $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- ightharpoonup implication fragment contains only \rightarrow

Formal Semantics

- ► Heyting algebras
- Kripke models

Definition

Kripke model is triple $\mathcal{C} = \langle \mathbf{C}, \leq, \Vdash \rangle$ with

- non-empty set C of states
- ▶ partial order ≤ on C
- \triangleright binary relation \vdash between elements of C and propositional atoms

such that $d \Vdash p$ whenever $c \Vdash p$ and $c \leq d$

Definition

Kripke model $\mathcal{C} = \langle C, \leqslant, \Vdash \rangle$, $c \in C$

- $ightharpoonup c \Vdash \varphi \land \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- $ightharpoonup c \Vdash \varphi \lor \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$
- $ightharpoonup c \Vdash \varphi \rightarrow \psi$ if and only if $d \Vdash \psi$ for all $d \geqslant c$ with $d \Vdash \varphi$
- \triangleright $c \Vdash \bot$

Krinke models

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $C = \langle C, \leqslant, \Vdash \rangle$ with $C = \{a, b, c\}$, $a \leqslant b$, $a \leqslant c$, $b \Vdash p$, $c \Vdash q$

- $ightharpoonup a \Vdash (p \rightarrow q) \rightarrow q$
- $ightharpoonup a \Vdash \neg \neg (p \lor q)$
- ightharpoonup $a \Vdash p \lor \neg p$

Definition

Kripke model $C = \langle C, \leq, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- ▶ $\mathcal{C} \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in C$

Kripke models

Definition

 $\Gamma \Vdash \varphi \text{ if } c \Vdash \varphi \text{ whenever } c \Vdash \Gamma \text{ for all Kripke models } \mathcal{C} = \langle C, \leqslant, \Vdash \rangle \text{ and } c \in C$

Lemma (Monotonicity)

if $c \leq d$ and $c \Vdash \varphi$ then $d \Vdash \varphi$

Lemma

if $\Vdash \varphi \lor \psi$ then $\Vdash \varphi$ or $\Vdash \psi$

WS 2023

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Important Concepts

- ▶ ||-
- implication fragment
- intuitionistic propositional logic

- Kripke model
 - principal type

- type inference
- type inhabitation

bring device

28/30

homework for January 8

► SC

next lecture (January 8): online evaluation in presence

universität innsbruck

WS 2023

Computability Theory

lecture 11

6. Summary

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Test on January 29

- ▶ 15:15 18:00 in HS 10
- online registration required before 10 am on January 23
- closed book

Earlier Exams/Tests

- ► SS 2022 (test)
- ► WS 2017 2
- ▶ WS 2017 1
- ► WS 2014 2

- ▶ WS 2014 1
- ► SS 2012
- ► SS 2008 2
- ► SS 2008 1

- ▶ SS 2007
- ► SS 2006 2
- ► SS 2006 1
- ▶ WS 2004