

WS 2023 lecture 11

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Definitions

• Gödel number of CL-term is defined inductively:

$$\mathfrak{g}(\mathsf{I}) = \langle \mathsf{0} \rangle \qquad \mathfrak{g}(\mathsf{K}) = \langle \mathsf{1} \rangle \qquad \mathfrak{g}(\mathsf{S}) = \langle \mathsf{2} \rangle \qquad \mathfrak{g}(t\,u) = \langle \mathsf{3}, \mathfrak{g}(t), \mathfrak{g}(u) \rangle \qquad \mathfrak{g}(x_i) = \langle \mathsf{4}, i \rangle$$

- $\operatorname{enc}(n) = \mathfrak{g}(\underline{n})$
- ▶ sets *T* and *U* of CL-terms are recursively separable if $\{g(t) | t \in T\}$ and $\{g(u) | u \in U\}$ are recursively separable
- ▶ set *T* of CL-terms is conversion-closed if $u \in T$ whenever $t \in T$ and $t \leftrightarrow^* u$

Theorem

CL-representable functions are partial recursive

Notation

 $\lceil t \rceil = \mathfrak{g}(t)$ is Church numeral of Gödel number of CL-term t

universität WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture

Theorem

 $\forall \text{ CL-term } F \exists \text{ CL-term } X \text{ such that } F \ulcorner X \urcorner \leftrightarrow^* X$

Theorem

- non-empty conversion-closed sets of CL-terms are recursively inseparable
- non-trivial conversion-closed sets of CL-terms are not recursive

Corollary

set of normalizing CL-terms is not recursive: decision problem

instance: CL-term t
question: is t normalizing?

is undecidable

Definition (Types)

set T of types is defined inductively:

- $\mathbb{V} \subseteq \mathbb{T}$ infinite set of type variables
- $\blacktriangleright \ \mathbb{C} \subseteq \mathbb{T} \qquad \text{type constants}$
- if $\sigma, \tau \in \mathbb{T}$ then $(\sigma \to \tau) \in \mathbb{T}$

Definition (Type Assignment, Curry-style)

- type assignment formula $t: \tau$ with CL-term t and type τ
- type assignment system TA

$$\begin{array}{ccc} \overline{\mathsf{I}: \sigma \to \sigma} & \overline{\mathsf{K}: \sigma \to \tau \to \sigma} & \overline{\mathsf{S}: (\rho \to \sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau} \\ & \\ & \\ \frac{t: \sigma \to \tau & u: \sigma}{t\, u: \tau} \end{array}$$
for all types σ, τ, ρ and CL-terms s and t

universität WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture

Notation

 $\Gamma \vdash t : \tau$ if $t : \tau$ can be derived in TA from assumptions in Γ

Theorem

if Γ , $x : \sigma \vdash t : \tau$ and $x \notin Var(\Gamma)$ then $\Gamma \vdash [x]t : \sigma \rightarrow \tau$

Theorem (Subject Reduction)

if $\Gamma \vdash t : \tau$ and $t \rightarrow u$ then $\Gamma \vdash u : \tau$

Definition

CL-term t with $Var(t) = \{x_1, \ldots, x_n\}$ is typable if

 $x_1: \rho_1, \ldots, x_n: \rho_n \vdash t: \tau$

for some types $\rho_1, \ldots, \rho_n, \tau$

universität WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture

6/30

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability,

while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem,

Curry–Howard isomorphism, de Bruijn notation, η –reduction, fixed point theorem, intuitionistic propositional logic, λ –definability, normalization theorem, termination, typing, undecidability, Z property, ...

Outline

1. Summary of Previous Lecture

2. Strong Normalization

- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

typable CL-terms are terminating (SN)

Definition

typable CL-term t is strongly computable (SC) if

- t has atomic type $\tau \in \mathbb{V} \cup \mathbb{C}$ and is SN
- *t* has type $\sigma \rightarrow \tau$ and *tu* is SC whenever $u : \sigma$ is SC

WS 2023 Computability Theory lecture 11 2. Strong Normalization

Lemma 🕦

for any type τ

0 every term $x u_1 \cdots u_n$ of type τ with variable x and SN terms u_1, \ldots, u_n is SC

2 every SC term of type τ is SN

Proof

induction on τ

• base case: τ is atomic

(1) $t = x u_1 \cdots u_n$ is SN $\implies t$ is SC (2) $t : \tau$ is SC $\implies t$ is SN

- step case: $\tau = \rho \rightarrow \sigma$
 - (1) $v: \rho$ is SC \implies v is SN \implies $x u_1 \cdots u_n v: \sigma$ is SC \implies $x u_1 \cdots u_n: \tau$ is SC
 - (2) consider SC term $t : \tau$ and $x : \rho$ with $x \in \mathcal{V} \setminus \mathcal{V}ar(t)$

 $\implies x \text{ is SC} \implies tx \text{ is SC} \implies tx \text{ is SN} \implies t \text{ is SN}$

universität WS 2023 Computability Theory lecture 11 2. Strong Normalization

Lemma 🥹

universität innsbruck

S, K and I are SC

Proof

$\mathbf{K}:\sigma\to\tau\to\sigma$

- $\sigma = \sigma_1 \rightarrow \cdots \rightarrow \sigma_n \rightarrow \theta$ with atomic type θ and $n \ge 0$
- consider arbitrary SC terms $s:\sigma$ $t:\tau$ $u_1:\sigma_1$... $u_n:\sigma_n$
- s is SC \implies s $u_1 \cdots u_n$ is SC \implies s $u_1 \cdots u_n$ is SN
- t is SC \implies t is SN
- Kst $u_1 \cdots u_n$ is SN: any infinite reduction starts with

$$\begin{array}{rcl} \mathsf{K} st\, u_1\, \dots\, u_n \, \to^* \, \mathsf{K} s'\, t'\, u_1'\, \dots\, u_n' \, \to s'\, u_1'\, \dots\, u_n' \, \to^* \, \cdots \\ \implies & s\, u_1\, \dots\, u_n \, \to s'\, u_1'\, \dots\, u_n' \, \to^* \, \cdots \end{array}$$

with $s \rightarrow^* s'$ $t \rightarrow^* t'$ $u_1 \rightarrow^* u'_1$ $u_n \rightarrow^* u'_n$

S and I: homework exercise

9/30

Lemma

every typable CL-term is SC

Proof	
induction on term t	
• <i>t</i> is variable \implies	t is SC by lemma 🜖
► $t \in \{I, K, S\}$ \implies	t is SC by lemma 2
$\blacktriangleright t = t_1 t_2 \implies$	t_1 and t_2 are SC by induction hypothesis $\implies t$ is SC

Corollary

typable CL-terms are SN

Outline

- **1. Summary of Previous Lecture**
- 2. Strong Normalization

3. Type Inference

- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic

WS 2023 Computability Theory lecture 11

- 6. Summary
- 7. Test

Theorem	
problem	
instance:	CL-term t
question:	is t typable ?
is decidable	

Definition

principal type of combinator t is any type σ such that

 $\textcircled{1} \vdash t : \sigma$

② if $\vdash t : \tau$ then τ is substitution instance of σ

Example

SKK has principal type $a \rightarrow a$ (where a is type variable)

universität WS 2023 Computability Theory lecture 11 3. Type Inference

Theorem

universität innsbruck

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ , τ , ρ)

3. Type Inference

$$\overline{\mathsf{I}: \sigma \to \sigma} \qquad \overline{\mathsf{K}: \sigma \to \tau \to \sigma} \qquad \overline{\mathsf{S}: (\rho \to \sigma \to \tau) \to (\rho \to \sigma) \to \rho \to \tau}$$
$$\frac{t: \sigma \to \tau \qquad \mathsf{U}: \sigma}{t \, \mathsf{U}: \tau}$$

and unification algorithm

Example **1**

principle type of SKK : $\sigma_1 \rightarrow \sigma_1$

- SK : $\alpha \rightarrow \beta$ K : α
- $\blacktriangleright \mathbf{S}: \gamma \to \delta \quad \mathbf{K}: \gamma$
- unification problem

$\begin{array}{ll} \alpha \approx \sigma_{1} \rightarrow \tau_{1} \rightarrow \sigma_{1} & \delta \approx \alpha \rightarrow \beta & \gamma \rightarrow \delta \approx (\rho_{2} \rightarrow \sigma_{2} \rightarrow \tau_{2}) \rightarrow (\rho_{2} \rightarrow \sigma_{2}) \rightarrow \rho_{2} \rightarrow \tau_{2} \\ \gamma \approx \sigma_{3} \rightarrow \tau_{3} \rightarrow \sigma_{3} & \gamma \approx \rho_{2} \rightarrow \sigma_{2} \rightarrow \tau_{2} & \delta \approx (\rho_{2} \rightarrow \sigma_{2}) \rightarrow \rho_{2} \rightarrow \tau_{2} \\ \alpha \approx \rho_{2} \rightarrow \sigma_{2} & \beta \approx \rho_{2} \rightarrow \tau_{2} & \rho_{2} \approx \sigma_{1} & \sigma_{2} \approx \tau_{1} \rightarrow \sigma_{1} \approx \tau_{3} \\ \sigma_{3} \approx \rho_{2} \approx \sigma_{1} \approx \tau_{2} & \tau_{3} \approx \sigma_{2} & \sigma_{3} \approx \tau_{2} \end{array}$

▶ mgu

$$\left(\begin{array}{ccc} \alpha \ \mapsto \ \sigma_1 \rightarrow \tau_1 \rightarrow \sigma_1 & \gamma \ \mapsto \ \sigma_1 \rightarrow (\tau_1 \rightarrow \sigma_1) \rightarrow \sigma_1 \\ \beta \ \mapsto \ \sigma_1 \rightarrow \sigma_1 & \delta \ \mapsto \ (\sigma_1 \rightarrow \tau_1 \rightarrow \sigma_1) \rightarrow \sigma_1 \rightarrow \sigma_1 \end{array} \right)$$

13/30

Example 🕑

SII cannot be typed

 $\blacktriangleright \mathsf{SI}: \alpha \to \beta \quad \mathsf{I}: \alpha$

```
\blacktriangleright S: \gamma \to \delta \quad I: \gamma
```

unification problem

```
\begin{array}{ll} \alpha \approx \sigma_1 \to \sigma_1 & \delta \approx \alpha \to \beta & \gamma \to \delta \approx (\rho_2 \to \sigma_2 \to \tau_2) \to (\rho_2 \to \sigma_2) \to \rho_2 \to \tau_2 \\ \gamma \approx \sigma_3 \to \sigma_3 & \gamma \approx \rho_2 \to \sigma_2 \to \tau_2 & \delta \approx (\rho_2 \to \sigma_2) \to \rho_2 \to \tau_2 \end{array}
```

```
\sigma_3 \approx \rho_2 \approx \sigma_2 \rightarrow \tau_2 \approx \sigma_1 \approx \sigma_2
```

```
\alpha \approx \rho_2 \rightarrow \sigma_2 \qquad \beta \approx \rho_2 \rightarrow \tau_2 \qquad \sigma_1 \approx \rho_2 \approx \sigma_2
```

has no solution

Example 🔞

principle type of $B = S(KS)K : (\sigma_4 \rightarrow \tau_4) \rightarrow (\rho_4 \rightarrow \sigma_4) \rightarrow \rho_4 \rightarrow \tau_4$

- ► $S(KS): \alpha \rightarrow \beta$ $K: \alpha$
- $\blacktriangleright S: \gamma \to \delta \quad \mathsf{KS}: \gamma$
- $\blacktriangleright \mathsf{K}: \epsilon \to \eta \quad \mathsf{S}: \epsilon$
- unification problem

 $\begin{array}{ccc} \alpha \approx \sigma_1 \rightarrow \tau_1 \rightarrow \sigma_1 & \delta \approx \alpha \rightarrow \beta & \gamma \rightarrow \delta \approx (\rho_2 \rightarrow \sigma_2 \rightarrow \tau_2) \rightarrow (\rho_2 \rightarrow \sigma_2) \rightarrow \rho_2 \rightarrow \tau_2 \\ \gamma \approx \eta & \epsilon \rightarrow \eta \approx \sigma_3 \rightarrow \tau_3 \rightarrow \sigma_3 & \epsilon \approx (\rho_4 \rightarrow \sigma_4 \rightarrow \tau_4) \rightarrow (\rho_4 \rightarrow \sigma_4) \rightarrow \rho_4 \rightarrow \tau_4 \end{array}$

▶ mgu

$$\{ \beta \mapsto (\sigma_4 \to \tau_4) \to (\rho_4 \to \sigma_4) \to \rho_4 \to \tau_4 \quad \cdots \}$$

universität WS 2023 Computability Theory lecture 11 3. Type Inference innsbruck 17/30

universität universität unsbruck WS 2023 Computability Theory lecture 11 3. Type Inference

Outline

- **1. Summary of Previous Lecture**
- 2. Strong Normalization
- **3. Type Inference**

4. Type Inhabitation

- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Definition

type τ is inhabited if $\vdash t : \tau$ for some combinator t

Remark

not every type is inhabited

Theorem

problem

instance: type τ question: is τ inhabited ?

is decidable

Remark

 $\mathsf{I}: \sigma \to \sigma \qquad \qquad \mathsf{K}: \sigma \to \tau \to \sigma$

 $\mathsf{S}: (
ho o \sigma o au) o (
ho o \sigma) o
ho o au$

valid formulas in intuitionistic propositional logic

WS 2023 Computability Theory lecture 11

Theorem (Curry-Howard)

type τ (without type constants) is inhabited if and only if τ is valid formula in implication fragment of intuitionistic propositional logic

4. Type Inhabitation

Outline

- **1. Summary of Previous Lecture**
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation

5. Intuitionistic Propositional Logic

Kripke models

- 6. Summary
- 7. Test

universität WS 2023 Computability Theory lecture 11 5. Intra innsbruck

5. Intuitionistic Propositional Logic

Syntax

universität innsbruck

- \blacktriangleright basic connectives $\ \rightarrow \ \land \ \lor \ \bot$
- derived connectives
 - $\blacktriangleright \ \neg \varphi \qquad \text{abbreviates} \ \varphi \to \bot$
- ▶ \top abbreviates $\bot \rightarrow \bot$
- $\varphi \leftrightarrow \psi$ abbreviates $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- implication fragment contains only \rightarrow

Formal Semantics

- Heyting algebras
- Kripke models

Definition

Kripke model is triple $C = \langle C, \leq, \Vdash \rangle$ with

- non-empty set C of states
- partial order \leq on C
- binary relation \Vdash between elements of *C* and propositional atoms

such that $d \Vdash p$ whenever $c \Vdash p$ and $c \leq d$

Definition

Kripke model $\mathcal{C} = \langle \mathcal{C}, \leqslant, \Vdash
angle$, $c \in \mathcal{C}$

- $c \Vdash \varphi \land \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- $c \Vdash \varphi \lor \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$
- $c \Vdash \varphi \rightarrow \psi$ if and only if $d \Vdash \psi$ for all $d \ge c$ with $d \Vdash \varphi$
- ► c ⊮ ⊥

21/30

Terminology

c forces p if $c \Vdash p$

Example

Kripke model $C = \langle C, \leqslant, \Vdash \rangle$ with $C = \{a, b, c\}$, $a \leqslant b$, $a \leqslant c$, $b \Vdash p$, $c \Vdash q$

- ▶ a \Vdash ($p \rightarrow q$) $\rightarrow q$
- ▶ $a \Vdash \neg \neg (p \lor q)$
- ▶ $a \not\vdash p \lor \neg p$

Definition

Kripke model $\mathcal{C} = \langle \mathcal{C}, \leqslant, \Vdash angle$, $c \in \mathcal{C}$

- ▶ $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- ▶ $C \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in C$

universität innsbruck	WS 2023	Computability Theory	lecture 11	5. Intuitionistic Propo
--------------------------	---------	----------------------	------------	-------------------------

5. Intuitionistic Propositional Logic Kripke models

Definition

 $\[\Gamma \Vdash \varphi \]$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C} = \langle C, \leqslant, \Vdash \rangle$ and $c \in C$

Lemma (Monotonicity)

if $c \leq d$ and $c \Vdash \varphi$ then $d \Vdash \varphi$

Lemma

 $\mathsf{if}\Vdash\varphi\lor\psi\;\mathsf{then}\Vdash\varphi\;\mathsf{or}\Vdash\psi$

Insbruck WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic Kripke models

Outline

- **1. Summary of Previous Lecture**
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic

6. Summary

7. Test

Important Concepts		
▶ ⊪	 Kripke model 	type inference
 implication fragment 	principal type	type inhabitation
 intuitionistic propositional logic 	► SC	

homework for January 8

next lecture (January 8): online evaluation in presence \implies bring device

25/30

Outline

- **1. Summary of Previous Lecture**
- 2. Strong Normalization
- 3. Type Inference
- 4. Type Inhabitation
- 5. Intuitionistic Propositional Logic
- 6. Summary
- 7. Test

Test on January 29

- ▶ 15:15-18:00 in HS 10
- online registration required before 10 am on January 23
- closed book

Earlier Exams/Tests					
► SS 2022 (test)	► WS 2014 - 1	► SS 2007			
► WS 2017 - 2	► SS 2012	► SS 2006 - 2			
▶ WS 2017 - 1	► SS 2008-2	► SS 2006 - 1			
► WS 2014 - 2	► SS 2008-1	► WS 2004			

universität WS 2023 Computability Theory lecture 11 7. Test

29/30

universität WS 2023 Computability Theory lecture 11 7. Test