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Definitions

▶ Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

▶ enc(n) = g(n)

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are
recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

CL–representable functions are partial recursive

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t
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Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Theorem

▶ non-empty conversion–closed sets of CL–terms are recursively inseparable

▶ non-trivial conversion–closed sets of CL–terms are not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami


Definition (Types)

set T of types is defined inductively:

▶ V ⊆ T infinite set of type variables

▶ C ⊆ T type constants

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ , ρ and CL–terms s and t
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Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ
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Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability,
while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .
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Theorem (Strong Normalization)

typable CL–terms are terminating (SN)

Definition

typable CL–term t is strongly computable (SC) if

▶ t has atomic type τ ∈ V ∪ C and is SN

▶ t has type σ → τ and t u is SC whenever u : σ is SC
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Lemma 1

for any type τ

1 every term x u1 · · · un of type τ with variable x and SN terms u1, . . . , un is SC

2 every SC term of type τ is SN

Proof

induction on τ

▶ base case: τ is atomic

1 t = x u1 · · · un is SN =⇒ t is SC

2 t : τ is SC =⇒ t is SN

▶ step case: τ = ρ→ σ

1 v : ρ is SC =⇒ v is SN =⇒ x u1 · · · un v : σ is SC =⇒ x u1 · · · un : τ is SC

2 consider SC term t : τ and x : ρ with x ∈ V \ Var(t)

=⇒ x is SC =⇒ t x is SC =⇒ t x is SN =⇒ t is SN
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Lemma 2

S, K and I are SC

Proof

K : σ → τ → σ

▶ σ = σ1 → · · · → σn → θ with atomic type θ and n ⩾ 0

▶ consider arbitrary SC terms s : σ t : τ u1 : σ1 . . . un : σn

▶ s is SC =⇒ s u1 · · · un is SC =⇒ s u1 · · · un is SN

▶ t is SC =⇒ t is SN

▶ K s t u1 · · · un is SN: any infinite reduction starts with

K s t u1 . . . un →∗ K s′ t′ u′1 . . . u
′
n → s′ u′1 . . . u

′
n →∗ · · ·

=⇒ s u1 . . . un → s′ u′1 . . . u
′
n →∗ · · · �

with s →∗ s′ t →∗ t′ u1 →∗ u′1 un →∗ u′n

S and I: homework exercise
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Lemma

every typable CL–term is SC

Proof

induction on term t

▶ t is variable =⇒ t is SC by lemma 1

▶ t ∈ { I,K,S} =⇒ t is SC by lemma 2

▶ t = t1t2 =⇒ t1 and t2 are SC by induction hypothesis =⇒ t is SC

Corollary

typable CL–terms are SN
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Theorem

problem

instance: CL–term t

question: is t typable ?

is decidable

Definition

principal type of combinator t is any type σ such that

1 ⊢ t : σ

2 if ⊢ t : τ then τ is substitution instance of σ

Example

SKK has principal type a → a (where a is type variable)
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Theorem

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ, τ , ρ)

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

t : σ → τ u : σ

t u : τ

and unification algorithm
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Example 1

principle type of SKK : σ1 → σ1

▶ SK : α→ β K : α

▶ S : γ → δ K : γ

▶ unification problem

α ≈ σ1 → τ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ σ3 → τ3 → σ3 γ ≈ ρ2 → σ2 → τ2 δ ≈ (ρ2 → σ2) → ρ2 → τ2

α ≈ ρ2 → σ2 β ≈ ρ2 → τ2 ρ2 ≈ σ1 σ2 ≈ τ1 → σ1 ≈ τ3

σ3 ≈ ρ2 ≈ σ1 ≈ τ2 τ3 ≈ σ2 σ3 ≈ τ2

▶ mgu {
α 7→ σ1 → τ1 → σ1 γ 7→ σ1 → (τ1 → σ1) → σ1

β 7→ σ1 → σ1 δ 7→ (σ1 → τ1 → σ1) → σ1 → σ1

}
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Example 2

SII cannot be typed

▶ SI : α→ β I : α

▶ S : γ → δ I : γ

▶ unification problem

α ≈ σ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ σ3 → σ3 γ ≈ ρ2 → σ2 → τ2 δ ≈ (ρ2 → σ2) → ρ2 → τ2

σ3 ≈ ρ2 ≈ σ2 → τ2 ≈ σ1 ≈ σ2

α ≈ ρ2 → σ2 β ≈ ρ2 → τ2 σ1 ≈ ρ2 ≈ σ2

has no solution
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Example 3

principle type of B = S(KS)K : (σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4

▶ S(KS) : α→ β K : α

▶ S : γ → δ KS : γ

▶ K : ϵ→ η S : ϵ

▶ unification problem

α ≈ σ1 → τ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ η ϵ→ η ≈ σ3 → τ3 → σ3 ϵ ≈ (ρ4 → σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4

▶ mgu {
β 7→ (σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4 · · ·

}
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Definition

type τ is inhabited if ⊢ t : τ for some combinator t

Remark

not every type is inhabited

Theorem

problem

instance: type τ

question: is τ inhabited ?

is decidable
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Remark

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

valid formulas in intuitionistic propositional logic

Theorem (Curry–Howard)

type τ (without type constants) is inhabited if and only if τ is valid formula in implication
fragment of intuitionistic propositional logic
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Syntax

▶ basic connectives → ∧ ∨ ⊥
▶ derived connectives

▶ ¬φ abbreviates φ→ ⊥
▶ ⊤ abbreviates ⊥ → ⊥
▶ φ↔ ψ abbreviates (φ→ ψ) ∧ (ψ → φ)

▶ implication fragment contains only →

Formal Semantics

▶ Heyting algebras

▶ Kripke models

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic 23/30

Definition

Kripke model is triple C = ⟨C,⩽, ⊩⟩ with

▶ non-empty set C of states

▶ partial order ⩽ on C

▶ binary relation ⊩ between elements of C and propositional atoms

such that d ⊩ p whenever c ⊩ p and c ⩽ d

Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ φ ∧ ψ if and only if c ⊩ φ and c ⊩ ψ

▶ c ⊩ φ ∨ ψ if and only if c ⊩ φ or c ⊩ ψ

▶ c ⊩ φ→ ψ if and only if d ⊩ ψ for all d ⩾ c with d ⊩ φ

▶ c ̸⊩ ⊥
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Terminology

c forces p if c ⊩ p

Example

Kripke model C = ⟨C,⩽, ⊩⟩ with C = {a,b, c}, a ⩽ b, a ⩽ c, b ⊩ p, c ⊩ q

▶ a ⊩ (p → q) → q

▶ a ⊩ ¬¬(p ∨ q)

▶ a ̸⊩ p ∨ ¬p

Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ Γ if c ⊩ φ for all φ ∈ Γ

▶ C ⊩ φ if c ⊩ φ for all c ∈ C
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Definition

Γ ⊩ φ if c ⊩ φ whenever c ⊩ Γ for all Kripke models C = ⟨C,⩽, ⊩⟩ and c ∈ C

Lemma (Monotonicity)

if c ⩽ d and c ⊩ φ then d ⊩ φ

Lemma

if ⊩ φ ∨ ψ then ⊩ φ or ⊩ ψ
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Important Concepts

▶ ⊩

▶ implication fragment

▶ intuitionistic propositional logic

▶ Kripke model

▶ principal type

▶ SC

▶ type inference

▶ type inhabitation

homework for January 8

next lecture (January 8): online evaluation in presence =⇒ bring device
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Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf
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