
WS 2023 lecture 11

Computability Theory

Aart Middeldorp

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 2/30

Definitions

▶ Gödel number of CL–term is defined inductively:

g(I) = ⟨0⟩ g(K) = ⟨1⟩ g(S) = ⟨2⟩ g(t u) = ⟨3, g(t), g(u)⟩ g(xi) = ⟨4, i⟩

▶ enc(n) = g(n)

▶ sets T and U of CL–terms are recursively separable if {g(t) | t ∈ T} and {g(u) | u ∈ U} are
recursively separable

▶ set T of CL–terms is conversion–closed if u ∈ T whenever t ∈ T and t ↔∗ u

Theorem

CL–representable functions are partial recursive

Notation

⌜t⌝ = g(t) is Church numeral of Gödel number of CL–term t

WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture 3/30

Theorem

∀ CL–term F ∃ CL–term X such that F ⌜X⌝ ↔∗ X

Theorem

▶ non-empty conversion–closed sets of CL–terms are recursively inseparable

▶ non-trivial conversion–closed sets of CL–terms are not recursive

Corollary

set of normalizing CL–terms is not recursive: decision problem

instance: CL–term t

question: is t normalizing ?

is undecidable

WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture 4/30

http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami

Definition (Types)

set T of types is defined inductively:

▶ V ⊆ T infinite set of type variables

▶ C ⊆ T type constants

▶ if σ, τ ∈ T then (σ → τ) ∈ T

Definition (Type Assignment, Curry-style)

▶ type assignment formula t : τ with CL–term t and type τ

▶ type assignment system TA

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

t : σ → τ u : σ

t u : τ

for all types σ, τ , ρ and CL–terms s and t

WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture 5/30

Notation

Γ ⊢ t : τ if t : τ can be derived in TA from assumptions in Γ

Theorem

if Γ, x : σ ⊢ t : τ and x /∈ Var(Γ) then Γ ⊢ [x]t : σ → τ

Theorem (Subject Reduction)

if Γ ⊢ t : τ and t → u then Γ ⊢ u : τ

Definition

CL–term t with Var(t) = {x1, . . . , xn} is typable if

x1 : ρ1, . . . , xn : ρn ⊢ t : τ

for some types ρ1, . . . , ρn, τ

WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture 6/30

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability,
while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 11 1. Summary of Previous Lecture Topics 7/30

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 2. Strong Normalization 8/30

Theorem (Strong Normalization)

typable CL–terms are terminating (SN)

Definition

typable CL–term t is strongly computable (SC) if

▶ t has atomic type τ ∈ V ∪ C and is SN

▶ t has type σ → τ and t u is SC whenever u : σ is SC

WS 2023 Computability Theory lecture 11 2. Strong Normalization 9/30

Lemma 1

for any type τ

1 every term x u1 · · · un of type τ with variable x and SN terms u1, . . . , un is SC

2 every SC term of type τ is SN

Proof

induction on τ

▶ base case: τ is atomic

1 t = x u1 · · · un is SN =⇒ t is SC

2 t : τ is SC =⇒ t is SN

▶ step case: τ = ρ→ σ

1 v : ρ is SC =⇒ v is SN =⇒ x u1 · · · un v : σ is SC =⇒ x u1 · · · un : τ is SC

2 consider SC term t : τ and x : ρ with x ∈ V \ Var(t)

=⇒ x is SC =⇒ t x is SC =⇒ t x is SN =⇒ t is SN

WS 2023 Computability Theory lecture 11 2. Strong Normalization 10/30

Lemma 2

S, K and I are SC

Proof

K : σ → τ → σ

▶ σ = σ1 → · · · → σn → θ with atomic type θ and n ⩾ 0

▶ consider arbitrary SC terms s : σ t : τ u1 : σ1 . . . un : σn

▶ s is SC =⇒ s u1 · · · un is SC =⇒ s u1 · · · un is SN

▶ t is SC =⇒ t is SN

▶ K s t u1 · · · un is SN: any infinite reduction starts with

K s t u1 . . . un →∗ K s′ t′ u′1 . . . u
′
n → s′ u′1 . . . u

′
n →∗ · · ·

=⇒ s u1 . . . un → s′ u′1 . . . u
′
n →∗ · · · �

with s →∗ s′ t →∗ t′ u1 →∗ u′1 un →∗ u′n

S and I: homework exercise

WS 2023 Computability Theory lecture 11 2. Strong Normalization 11/30

Lemma

every typable CL–term is SC

Proof

induction on term t

▶ t is variable =⇒ t is SC by lemma 1

▶ t ∈ { I,K,S} =⇒ t is SC by lemma 2

▶ t = t1t2 =⇒ t1 and t2 are SC by induction hypothesis =⇒ t is SC

Corollary

typable CL–terms are SN

WS 2023 Computability Theory lecture 11 2. Strong Normalization 12/30

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 3. Type Inference 13/30

Theorem

problem

instance: CL–term t

question: is t typable ?

is decidable

Definition

principal type of combinator t is any type σ such that

1 ⊢ t : σ

2 if ⊢ t : τ then τ is substitution instance of σ

Example

SKK has principal type a → a (where a is type variable)

WS 2023 Computability Theory lecture 11 3. Type Inference 14/30

Theorem

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ, τ , ρ)

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

t : σ → τ u : σ

t u : τ

and unification algorithm

WS 2023 Computability Theory lecture 11 3. Type Inference 15/30

Example 1

principle type of SKK : σ1 → σ1

▶ SK : α→ β K : α

▶ S : γ → δ K : γ

▶ unification problem

α ≈ σ1 → τ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ σ3 → τ3 → σ3 γ ≈ ρ2 → σ2 → τ2 δ ≈ (ρ2 → σ2) → ρ2 → τ2

α ≈ ρ2 → σ2 β ≈ ρ2 → τ2 ρ2 ≈ σ1 σ2 ≈ τ1 → σ1 ≈ τ3

σ3 ≈ ρ2 ≈ σ1 ≈ τ2 τ3 ≈ σ2 σ3 ≈ τ2

▶ mgu {
α 7→ σ1 → τ1 → σ1 γ 7→ σ1 → (τ1 → σ1) → σ1

β 7→ σ1 → σ1 δ 7→ (σ1 → τ1 → σ1) → σ1 → σ1

}

WS 2023 Computability Theory lecture 11 3. Type Inference 16/30

Example 2

SII cannot be typed

▶ SI : α→ β I : α

▶ S : γ → δ I : γ

▶ unification problem

α ≈ σ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ σ3 → σ3 γ ≈ ρ2 → σ2 → τ2 δ ≈ (ρ2 → σ2) → ρ2 → τ2

σ3 ≈ ρ2 ≈ σ2 → τ2 ≈ σ1 ≈ σ2

α ≈ ρ2 → σ2 β ≈ ρ2 → τ2 σ1 ≈ ρ2 ≈ σ2

has no solution

WS 2023 Computability Theory lecture 11 3. Type Inference 17/30

Example 3

principle type of B = S(KS)K : (σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4

▶ S(KS) : α→ β K : α

▶ S : γ → δ KS : γ

▶ K : ϵ→ η S : ϵ

▶ unification problem

α ≈ σ1 → τ1 → σ1 δ ≈ α→ β γ → δ ≈ (ρ2 → σ2 → τ2) → (ρ2 → σ2) → ρ2 → τ2

γ ≈ η ϵ→ η ≈ σ3 → τ3 → σ3 ϵ ≈ (ρ4 → σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4

▶ mgu {
β 7→ (σ4 → τ4) → (ρ4 → σ4) → ρ4 → τ4 · · ·

}

WS 2023 Computability Theory lecture 11 3. Type Inference 18/30

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 4. Type Inhabitation 19/30

Definition

type τ is inhabited if ⊢ t : τ for some combinator t

Remark

not every type is inhabited

Theorem

problem

instance: type τ

question: is τ inhabited ?

is decidable

WS 2023 Computability Theory lecture 11 4. Type Inhabitation 20/30

Remark

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

valid formulas in intuitionistic propositional logic

Theorem (Curry–Howard)

type τ (without type constants) is inhabited if and only if τ is valid formula in implication
fragment of intuitionistic propositional logic

WS 2023 Computability Theory lecture 11 4. Type Inhabitation 21/30

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

Kripke models

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic 22/30

Syntax

▶ basic connectives → ∧ ∨ ⊥
▶ derived connectives

▶ ¬φ abbreviates φ→ ⊥
▶ ⊤ abbreviates ⊥ → ⊥
▶ φ↔ ψ abbreviates (φ→ ψ) ∧ (ψ → φ)

▶ implication fragment contains only →

Formal Semantics

▶ Heyting algebras

▶ Kripke models

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic 23/30

Definition

Kripke model is triple C = ⟨C,⩽, ⊩⟩ with

▶ non-empty set C of states

▶ partial order ⩽ on C

▶ binary relation ⊩ between elements of C and propositional atoms

such that d ⊩ p whenever c ⊩ p and c ⩽ d

Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ φ ∧ ψ if and only if c ⊩ φ and c ⊩ ψ

▶ c ⊩ φ ∨ ψ if and only if c ⊩ φ or c ⊩ ψ

▶ c ⊩ φ→ ψ if and only if d ⊩ ψ for all d ⩾ c with d ⊩ φ

▶ c ̸⊩ ⊥

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic Kripke models 24/30

Terminology

c forces p if c ⊩ p

Example

Kripke model C = ⟨C,⩽, ⊩⟩ with C = {a,b, c}, a ⩽ b, a ⩽ c, b ⊩ p, c ⊩ q

▶ a ⊩ (p → q) → q

▶ a ⊩ ¬¬(p ∨ q)

▶ a ̸⊩ p ∨ ¬p

Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ Γ if c ⊩ φ for all φ ∈ Γ

▶ C ⊩ φ if c ⊩ φ for all c ∈ C

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic Kripke models 25/30

Definition

Γ ⊩ φ if c ⊩ φ whenever c ⊩ Γ for all Kripke models C = ⟨C,⩽, ⊩⟩ and c ∈ C

Lemma (Monotonicity)

if c ⩽ d and c ⊩ φ then d ⊩ φ

Lemma

if ⊩ φ ∨ ψ then ⊩ φ or ⊩ ψ

WS 2023 Computability Theory lecture 11 5. Intuitionistic Propositional Logic Kripke models 26/30

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 6. Summary 27/30

Important Concepts

▶ ⊩

▶ implication fragment

▶ intuitionistic propositional logic

▶ Kripke model

▶ principal type

▶ SC

▶ type inference

▶ type inhabitation

homework for January 8

next lecture (January 8): online evaluation in presence =⇒ bring device

WS 2023 Computability Theory lecture 11 6. Summary 28/30

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/11.pdf

Outline
1. Summary of Previous Lecture

2. Strong Normalization

3. Type Inference

4. Type Inhabitation

5. Intuitionistic Propositional Logic

6. Summary

7. Test

WS 2023 Computability Theory lecture 11 7. Test 29/30

Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004

WS 2023 Computability Theory lecture 11 7. Test 30/30

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss12-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf

	lecture 11
	Summary of Previous Lecture
	Topics

	Strong Normalization
	Type Inference
	Type Inhabitation
	Intuitionistic Propositional Logic
	Kripke models

	Summary
	Test

