

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Theorem (Strong Normalization)

typable CL-terms are terminating (SN)

Definition

typable CL-term t is strongly computable (SC) if

Computability Theory

- t has atomic type $\tau \in \mathbb{V} \cup \mathbb{C}$ and is SN
- ▶ t has type $\sigma \rightarrow \tau$ and tu is SC whenever $u : \sigma$ is SC

Lemma

every typable term is SC and every SC term is terminating

Theorem

problem

instance: CL-term t question: is t typable?

is decidable

Definition

principal type of combinator t is any type σ such that

- \bigcirc \vdash $t:\sigma$
- if $\vdash t : \tau$ then τ is substitution instance of σ

Theorem

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ , τ , ρ)

$$\overline{\mathsf{I}:\sigma\to\sigma}\qquad \overline{\mathsf{K}:\sigma\to\tau\to\sigma}$$

$$\overline{\mathsf{I}:\sigma o\sigma}$$
 $\overline{\mathsf{K}:\sigma o au o\sigma}$ $\overline{\mathsf{S}:(
ho o\sigma o au) o(
ho o\sigma) o
ho o au}$

and unification algorithm

Definition

type τ is inhabited if $\vdash t : \tau$ for some combinator t

Theorem

problem instance: type τ

question: is τ inhabited?

is decidable

 $t:\sigma\to\tau$ $u:\sigma$

Intuitionistic Propositional Logic

- ightharpoonup basic connectives $ightharpoonup \wedge \ \lor \ \bot$
- derived connectives
 - $ightharpoonup
 eg \varphi$ abbreviates $\varphi \to \bot$
 - ▶ \top abbreviates $\bot \to \bot$
 - $\varphi \leftrightarrow \psi$ abbreviates $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- ightharpoonup implication fragment contains only ightarrow

Definition

Kripke model is triple $C = \langle C, \leq, \Vdash \rangle$ with

- ► non-empty set *C* of states
- ▶ partial order ≤ on C
- ightharpoonup binary relation \Vdash between elements of C and propositional atoms

such that $d \Vdash p$ whenever $c \Vdash p$ and $c \leqslant d$

Kripke model $C = \langle C, \leq, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \varphi \land \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- $\blacktriangleright c \Vdash \varphi \lor \psi \text{ if and only if } c \Vdash \varphi \text{ or } c \Vdash \psi$
- ▶ $c \Vdash \varphi \rightarrow \psi$ if and only if $d \Vdash \psi$ for all $d \geqslant c$ with $d \Vdash \varphi$
- **▶** *C* | *y* ⊥

Terminology

c forces p if $c \Vdash p$

Definition

Kripke model $C = \langle C, \leqslant, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- ▶ $\mathcal{C} \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in C$

 $\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C} = \langle \mathcal{C}, \leqslant, \Vdash \rangle$ and $c \in \mathcal{C}$

Lemma (Monotonicity)

if $c \leqslant d$ and $c \Vdash \varphi$ then $d \Vdash \varphi$

Lemma

if $\Vdash \varphi \lor \psi$ then $\Vdash \varphi$ or $\Vdash \psi$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 $\alpha-$ equivalence, abstraction, arithmetization, $\beta-$ reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, $\eta-$ reduction, fixed point theorem, intuitionistic propositional logic, $\lambda-$ definability, normalization theorem, termination, typing, undecidability, Z property, . . .

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, . . .

Outline

1. Summary of Previous Lecture

2. Evaluation

- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index

WS 2023 Computability Theory

lecture 12

2. Evaluation

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

- ightharpoonup derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
 - axiom or
 - ▶ member of Γ or
 - follows from earlier formulas by modus ponens

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

- derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
 - axiom or
 - ▶ member of Γ or
 - ▶ follows from earlier formulas by modus ponens
- φ is consequence of set Γ ($\Gamma \vdash_h \varphi$) if φ is last line of derivation from Γ

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

- derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
 - axiom or
 - ▶ member of Γ or
 - ▶ follows from earlier formulas by modus ponens
- φ is consequence of set Γ ($\Gamma \vdash_h \varphi$) if φ is last line of derivation from Γ
- ▶ proof in Hilbert system is derivation from ∅

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

- ► derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
 - axiom or
 - ▶ member of Γ or
 - ▶ follows from earlier formulas by modus ponens
- φ is consequence of set Γ ($\Gamma \vdash_h \varphi$) if φ is last line of derivation from Γ
- ▶ proof in Hilbert system is derivation from ∅
- ▶ formula φ is theorem ($\vdash_h \varphi$) if φ is consequence of \varnothing

 $\varphi \to \varphi$ is theorem:

1
$$(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$$
 axiom

WS 2023

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom
- $2 \quad \varphi \to (\varphi \to \varphi) \to \varphi$

axiom

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom
- 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom modus ponens 1, 2
- 3 $(\varphi \rightarrow \varphi \rightarrow \varphi) \rightarrow \varphi \rightarrow \varphi$

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom
- 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom
- 3 $(\varphi \rightarrow \varphi \rightarrow \varphi) \rightarrow \varphi \rightarrow \varphi$
- 4 $\varphi \rightarrow \varphi \rightarrow \varphi$

modus ponens 1, 2

axiom

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom
- 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom
- 3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ modus ponens 1, 2 4 $\varphi \to \varphi \to \varphi$ axiom
- 5 $\varphi o \varphi$ modus ponens 3, 4

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom
- 3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$
- $4 \quad \varphi \to \varphi \to \varphi$
- 5 $\varphi \rightarrow \varphi$

- modus ponens 1, 2 axiom
- modus ponens 3, 4

Deduction Theorem

$$\Gamma \cup \{\varphi\} \, \vdash_{\mathsf{h}} \, \psi \quad \iff \quad \Gamma \, \vdash_{\mathsf{h}} \, \varphi \to \psi$$

 $\varphi \to \varphi$ is theorem:

- 1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom
- 3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$
- 4 $\varphi \rightarrow \varphi \rightarrow \varphi$ 5 $\varphi \rightarrow \varphi$

Deduction Theorem

$$\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi \iff \Gamma \vdash_{\mathsf{h}} \varphi \to \psi$$

Proof (\Leftarrow)

▶ suppose $\Gamma \vdash_h \varphi \rightarrow \psi$

WS 2023

universität innsbruck

modus ponens 1, 2

modus ponens 3, 4

axiom

$$\varphi \to \varphi$$
 is theorem:

1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom 3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$

4 $\varphi \rightarrow \varphi \rightarrow \varphi$ 5 $\varphi \rightarrow \varphi$

modus ponens 1, 2 axiom

modus ponens 3, 4

Deduction Theorem

$$\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi \quad \Longleftrightarrow \quad \Gamma \vdash_{\mathsf{h}} \varphi \to \psi$$

Proof (\Leftarrow)

▶ suppose $\Gamma \vdash_h \varphi \rightarrow \psi$

WS 2023

 $ightharpoonup \Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \varphi \to \psi$

$$\varphi \to \varphi$$
 is theorem:

3
$$(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$$

4 $\varphi \to \varphi \to \varphi$

2 $\varphi \to (\varphi \to \varphi) \to \varphi$

5
$$\varphi \rightarrow \varphi$$

axiom axiom

modus ponens 1, 2 axiom

modus ponens 3, 4

Deduction Theorem

$$\Gamma \cup \{\varphi\} \vdash_\mathsf{h} \psi \quad \Longleftrightarrow \quad \Gamma \vdash_\mathsf{h} \varphi \to \psi$$

$\mathsf{Proof} \; (\Longleftarrow)$

- ▶ suppose $\Gamma \vdash_h \varphi \rightarrow \psi$
- ightharpoonup $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \varphi \rightarrow \psi$ and $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \varphi$

1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$

$$\varphi \to \varphi$$
 is theorem:

1 $(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ axiom 2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom 3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$

4 $\varphi \rightarrow \varphi \rightarrow \varphi$ 5 $\varphi \rightarrow \varphi$

modus ponens 1, 2

axiom modus ponens 3, 4

Deduction Theorem

$$\Gamma \cup \{\varphi\} \, \vdash_\mathsf{h} \, \psi \quad \iff \quad \Gamma \, \vdash_\mathsf{h} \, \varphi \to \psi$$

Proof (\Leftarrow)

- ▶ suppose $\Gamma \vdash_h \varphi \rightarrow \psi$
- $ightharpoonup \Gamma \cup \{\varphi\} \vdash_{h} \varphi \rightarrow \psi$ and $\Gamma \cup \{\varphi\} \vdash_{h} \varphi \implies \Gamma \cup \{\varphi\} \vdash_{h} \psi$ by modus ponens

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem

WS 2023

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

$$\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \chi$$

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

$$\begin{array}{ccc} \blacktriangleright & \{\varphi \to \psi \to \chi, \psi, \varphi\} \; \vdash_{\mathsf{h}} \; \chi \\ & \mathbf{1} & \varphi \to \psi \to \chi \\ & \mathbf{2} & \varphi \end{array}$$

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- - 1 $\varphi \to \psi \to \chi$

3 $\psi o \chi$ modus ponens 1, 2

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - $\frac{\mathbf{p}}{\varphi}$
 - 3 $\psi
 ightarrow \chi$ modus ponens 1, 2
 - 4 ψ

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - 2
 - 3 $\psi \to \chi$
 - 4 ψ
 - 5

modus ponens 3, 4

modus ponens 1, 2

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - Ψ
 - 3 $\psi \rightarrow \chi$ modus ponens 1, 2
 - 4 ψ
 - 5 χ

modus ponens 3, 4

 $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi\} \vdash_{\mathsf{h}} \varphi \to \chi \qquad \text{ by deduction theorem}$

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - Ζ φ
 - 3 $\psi \rightarrow \chi$ modus ponens 1, 2
 - 4 ψ
 - 5 χ

- modus ponens 3, 4
- ▶ $\{\varphi \to \psi \to \chi, \psi\}$ $\vdash_{\mathsf{h}} \varphi \to \chi$ by deduction theorem
- ▶ $\{\varphi \to \psi \to \chi\}$ $\vdash_{\mathsf{h}} \psi \to \varphi \to \chi$ by deduction theorem

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - Y
 - 3 $\psi o \chi$ modus ponens 1, 2
 - 4 ψ
 - 5 χ

modus ponens 3, 4

- ▶ $\{\varphi \to \psi \to \chi, \psi\}$ $\vdash_{\mathsf{h}} \varphi \to \chi$ by deduction theorem
- ▶ $\{\varphi \to \psi \to \chi\}$ $\vdash_{\mathsf{h}} \psi \to \varphi \to \chi$ by deduction theorem
- ▶ $\vdash_h (\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$ by deduction theorem

▶ suppose $\Gamma \cup \{\varphi\} \vdash_h \psi$

WS 2023

- $\blacktriangleright \ \, \mathsf{suppose} \,\, \Gamma \cup \{\varphi\} \, \vdash_\mathsf{h} \, \psi$
- ▶ let Π_1 : χ_1, \dots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$

- $\blacktriangleright \ \, \mathsf{suppose} \,\, \Gamma \cup \{\varphi\} \, \vdash_\mathsf{h} \, \psi$
- ▶ let Π_1 : χ_1, \dots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$

WS 2023

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \dots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_h \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- \blacktriangleright insert extra lines into Π_2 and use modus ponens

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ
 - ② if $\chi_i = \varphi$
 - 3 if χ_i is derived with modus ponens from χ_j and χ_k with j, k < i

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_h \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence $\Pi_2: \varphi \to \chi_1, \dots, \varphi \to \chi_n$
- ightharpoonup insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$
 - 3 if χ_i is derived with modus ponens from χ_j and χ_k with j, k < i

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_h \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- ▶ insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$ insert steps of proof of $\varphi \to \varphi$ before it
 - ③ if χ_i is derived with modus ponens from χ_j and χ_k with j,k < i

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$ insert steps of proof of $\varphi \to \varphi$ before it

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- ightharpoonup insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$ insert steps of proof of $\varphi \to \varphi$ before it
 - ③ if χ_i is derived with modus ponens from χ_j and χ_k with j, k < i then $\chi_k = (\chi_j \to \chi_i)$ insert $(\varphi \to \chi_j \to \chi_i) \to (\varphi \to \chi_j) \to \varphi \to \chi_i$ and $(\varphi \to \chi_j) \to \varphi \to \chi_i$ before $\varphi \to \chi_i$

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$ insert steps of proof of $\varphi \to \varphi$ before it
 - ③ if χ_i is derived with modus ponens from χ_j and χ_k with j,k < i then $\chi_k = (\chi_j \to \chi_i)$ insert $(\varphi \to \chi_j \to \chi_i) \to (\varphi \to \chi_j) \to \varphi \to \chi_i$ and $(\varphi \to \chi_j) \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
- lacktriangleright resulting sequence is derivation of $\varphi o \psi$ from Γ

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$

WS 2023

Computability Theory

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$

$oxed{\mathsf{Proof}}$ (\Longrightarrow)

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\blacktriangleright \ \varphi \in \Gamma$

- ightharpoonup arphi is obtained by modus ponens

$m{\mathsf{Proof}}$ (\Longrightarrow)

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\qquad \qquad \varphi \in \Gamma \\ \qquad \qquad \Gamma \Vdash \varphi \text{ holds trivially}$

- $ightharpoonup \varphi$ is obtained by modus ponens

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\varphi \in \Gamma$
- $\Gamma \Vdash \varphi$ holds trivially
- $\varphi = (\psi_1 \to \psi_2 \to \psi_1)$ $\Vdash \varphi \text{ by definition of } \Vdash$

ullet φ is obtained by modus ponens

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\qquad \qquad \varphi \in \Gamma \\ \qquad \qquad \Gamma \Vdash \varphi \text{ holds trivially}$
- $\varphi = (\psi_1 \to \psi_2 \to \psi_1)$ $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$
- ullet φ is obtained by modus ponens

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\varphi \in \Gamma$ $\Gamma \Vdash \varphi \text{ holds trivially}$

 $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$

- $\qquad \qquad \varphi = ((\psi_1 \to \psi_2 \to \psi_3) \to (\psi_1 \to \psi_2) \to \psi_1 \to \psi_3)$
 - $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$
- ightharpoonup arphi is obtained by modus ponens

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\qquad \qquad \varphi \in \Gamma \\ \qquad \qquad \Gamma \Vdash \varphi \text{ holds trivially}$

 $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$

- - $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- $lackbox{} \varphi$ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi$$
 and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\varphi \in \Gamma$ $\Gamma \Vdash \varphi \text{ holds trivially }$

 $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$

 $\qquad \qquad \varphi = ((\psi_1 \to \psi_2 \to \psi_3) \to (\psi_1 \to \psi_2) \to \psi_1 \to \psi_3)$

 $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$

ullet φ is obtained by modus ponens

 $\Gamma \vdash_{\mathsf{h}} \psi$ and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$ are shorter derivations

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\qquad \qquad \varphi \in \Gamma \\ \qquad \qquad \Gamma \Vdash \varphi \text{ holds trivially}$

 $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$

- - $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- ightharpoonup arphi is obtained by modus ponens
 - $\Gamma \vdash_{\mathsf{h}} \psi$ and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$ are shorter derivations

 $\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \rightarrow \varphi$ by induction hypothesis

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\blacktriangleright \ \varphi \in \Gamma$
 - $\Gamma \Vdash \varphi$ holds trivially
- $\qquad \qquad \varphi = (\psi_1 \to \psi_2 \to \psi_1)$
 - $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$
- $\blacktriangleright \varphi = ((\psi_1 \to \psi_2 \to \psi_3) \to (\psi_1 \to \psi_2) \to \psi_1 \to \psi_3)$
 - $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- ightharpoonup arphi is obtained by modus ponens
 - $\Gamma \vdash_{\mathsf{h}} \psi$ and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$ are shorter derivations
 - $\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \rightarrow \varphi$ by induction hypothesis
 - $\Gamma \Vdash \varphi$ by definition of \Vdash

$\mathsf{Proof} \; (\Longleftarrow)$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

WS 2023

$\mathsf{Proof} \ (\Longleftarrow)$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$

$\mathsf{Proof} \; (\Longleftarrow)$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

$$\blacktriangleright \ \ \textit{C} = \{ \Delta \ | \ \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \ | \ \Delta \ \vdash_{\textbf{h}} \ \psi \} \}$$

$\mathsf{Proof} \; (\Longleftarrow)$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \ | \ \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \ | \ \Delta \ \vdash_{\textbf{h}} \ \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

$\mathsf{Proof} \ (\Longleftarrow)$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \, \Vdash \psi \iff \, \psi \in \Delta \quad \text{for all } \, \Delta \in \textit{\textbf{C}} \, \text{ and implicational formulas } \, \psi$

Proof (←)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ proof of claim (induction on ψ): consider $\psi = (\psi_1 \to \psi_2)$

Proof (←)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \to \psi_2)$

 \implies let $\Delta \Vdash \psi$

Proof (⇐═)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi = (\psi_1 \rightarrow \psi_2)$

 \implies let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

Proof (==)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \to \psi_2)$

$$\implies \text{ let } \Delta \Vdash \psi \text{ and define } \Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$$

$$\psi_1 \in \Delta'$$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \Delta \in \textbf{\textit{C}} \ \text{and implicational formulas} \ \psi$

proof of claim (induction on ψ): consider $\psi=(\psi_1 \to \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

$$\psi_1 \in \Delta' \in C$$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \to \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

 $\psi_1 \in \Delta' \in C$ and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \rightarrow \psi_2)$

$$\implies$$
 let $\triangle \Vdash \psi$ and define $\triangle' = \{\chi \mid \triangle, \psi_1 \vdash_h \chi\}$

$$\psi_1 \in \Delta' \in C$$
 and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

$$\Delta' \Vdash \psi_2$$
 because $\Delta \subseteq \Delta'$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \to \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

$$\psi_1 \in \Delta' \in \mathcal{C}$$
 and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

$$\Delta' \Vdash \psi_2$$
 because $\Delta \subseteq \Delta'$ and thus $\psi_2 \in \Delta'$ by induction hypothesis

Proof (\Leftarrow)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi=(\psi_1 \rightarrow \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

$$\psi_1 \in \Delta' \in C$$
 and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

$$\Delta' \Vdash \psi_2$$
 because $\Delta \subseteq \Delta'$ and thus $\psi_2 \in \Delta'$ by induction hypothesis

$$\Delta, \psi_1 \vdash_{\mathsf{h}} \psi_2$$

Proof (\Leftarrow)

suppose $\Gamma \vdash_h \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- ▶ $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

proof of claim (induction on
$$\psi$$
): consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

$$\psi_1 \in \Delta' \in C$$
 and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

$$\Delta' \Vdash \psi_2$$
 because $\Delta \subseteq \Delta'$ and thus $\psi_2 \in \Delta'$ by induction hypothesis

$$\Delta, \psi_1 \vdash_{\mathsf{h}} \psi_2$$

$$\Delta \vdash_{\mathsf{h}} \psi$$
 by deduction theorem

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:}\quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \ \Delta \in \textit{C} \ \text{ and implicational formulas } \ \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

 \iff let $\psi \in \Delta$

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \, \Vdash \psi \iff \; \psi \in \Delta \quad \text{for all } \; \Delta \in \textit{C} \; \text{and implicational formulas} \; \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

 \longleftarrow let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \ | \ \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \ | \ \Delta \ \vdash_{\mathsf{h}} \ \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \, \Vdash \psi \iff \, \psi \in \Delta \quad \text{for all } \, \Delta \in \textit{\textbf{C}} \, \text{ and implicational formulas } \, \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

 $\psi_1 \in \Delta'$ by induction hypothesis

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:}\quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \Delta \in \textit{C} \ \text{and implicational formulas} \ \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

 $\psi_1 \in \Delta'$ by induction hypothesis and thus $\Delta' \vdash_h \psi_1$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \, \Vdash \psi \iff \, \psi \in \Delta \quad \text{for all } \, \Delta \in \textit{\textbf{C}} \, \text{ and implicational formulas } \, \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_{\mathbf{1}} \in \Delta'$$
 by induction hypothesis and thus $\Delta' \, \vdash_{\mathsf{h}} \, \psi_{\mathbf{1}}$

$$\Delta' \vdash_{\mathsf{h}} \psi$$
 because $\Delta \vdash_{\mathsf{h}} \psi$ and $\Delta \subseteq \Delta'$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:}\quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \ \Delta \in \textit{C} \ \text{ and implicational formulas } \ \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_{\mathbf{1}} \in \Delta'$$
 by induction hypothesis and thus $\Delta' \vdash_{\mathbf{h}} \psi_{\mathbf{1}}$

$$\Delta' \vdash_{\mathsf{h}} \psi$$
 because $\Delta \vdash_{\mathsf{h}} \psi$ and $\Delta \subseteq \Delta'$

$$\Delta' \vdash_h \psi_2$$
 by modus ponens

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

$$\text{claim:}\quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \ \Delta \in \textit{C} \ \text{ and implicational formulas } \ \psi$$

proof of claim: consider
$$\psi = (\psi_1 \rightarrow \psi_2)$$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_1 \in \Delta'$$
 by induction hypothesis and thus $\Delta' \vdash_\mathsf{h} \psi_1$

$$\Delta' \vdash_h \psi$$
 because $\Delta \vdash_h \psi$ and $\Delta \subseteq \Delta'$

$$\Delta' \vdash_h \psi_2$$
 by modus ponens and thus $\psi_2 \in \Delta'$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- ▶ $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\triangle \Vdash p$ if $p \in \triangle$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_{\mathbf{1}} \in \Delta'$$
 by induction hypothesis and thus $\Delta' \vdash_{\mathsf{h}} \psi_{\mathbf{1}}$

$$\Delta' \vdash_{\mathsf{h}} \psi$$
 because $\Delta \vdash_{\mathsf{h}} \psi$ and $\Delta \subseteq \Delta'$

$$\Delta' \vdash_h \psi_2$$
 by modus ponens and thus $\psi_2 \in \Delta'$

$$\Delta' \Vdash \psi_2$$
 by induction hypothesis

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- ▶ $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:}\quad \Delta \ \Vdash \psi \iff \ \psi \in \Delta \quad \text{for all } \Delta \in \textit{C} \ \text{and implicational formulas} \ \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_{\mathbf{1}} \in \Delta'$$
 by induction hypothesis and thus $\Delta' \vdash_{\mathsf{h}} \psi_{\mathbf{1}}$

$$\Delta' \vdash_h \psi$$
 because $\Delta \vdash_h \psi$ and $\Delta \subseteq \Delta'$

$$\Delta' \vdash_h \psi_2$$
 by modus ponens and thus $\psi_2 \in \Delta'$

$$\Delta' \Vdash \psi_2$$
 by induction hypothesis and thus $\Delta' \Vdash \psi$ by definition of \Vdash

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ define $\Delta = \{\psi \mid \Gamma \vdash_h \psi\}$

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ define $\Delta = \{\psi \mid \Gamma \vdash_h \psi\}$

 $\Delta \in C$

$\mathsf{Proof} \ \ (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_h \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

define
$$\Delta = \{ \psi \mid \Gamma \vdash_h \psi \}$$

 $\Delta \in C$ and $\varphi \notin \Delta$

lecture 12

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

 $\text{define } \Delta = \{\psi \mid \Gamma \vdash_{\mathsf{h}} \psi\}$

 $\Delta \in C$ and $\varphi \notin \Delta$ and thus $\Gamma \subseteq \Delta$

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

 $\text{define } \Delta = \{\psi \mid \Gamma \vdash_{\mathsf{h}} \psi\}$

 $\Delta \in \textit{C} \, \text{ and } \, \varphi \notin \Delta \, \text{ and thus } \, \Gamma \subseteq \Delta \, \text{ and } \, \Delta \, \not \Vdash \varphi$

$m{\mathsf{Proof}}\,\,(\ \Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ C = \{ \Delta \mid \Gamma \subseteq \Delta \ \text{and} \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

define
$$\Delta = \{ \psi \mid \Gamma \vdash_{\mathsf{h}} \psi \}$$

$$\Delta \in \textit{C} \text{ and } \varphi \notin \Delta \text{ and thus } \Gamma \subseteq \Delta \text{ and } \Delta \not \Vdash \varphi$$

$$\Gamma \not\Vdash \varphi$$
 by definition of \Vdash

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in \mathcal{C}$ and implicational formulas ψ

 $\text{define } \Delta = \{\psi \mid \Gamma \vdash_{\mathsf{h}} \psi\}$

 $\Delta \in \textit{C} \text{ and } \varphi \notin \Delta \text{ and thus } \Gamma \subseteq \Delta \text{ and } \Delta \not \Vdash \varphi$

 $\Gamma \not\Vdash \varphi$ by definition of \Vdash

Example (Peirce's Law)

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

type assignment

$$\Gamma$$
, $x : \tau \vdash x : \tau$

$$\Gamma \vdash \mathsf{K} : \sigma \to \tau \to \sigma$$

$$\Gamma \vdash S : (\sigma \rightarrow \tau \rightarrow \rho) \rightarrow (\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \rho$$

$$\frac{\Gamma \vdash t : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash tu : \tau}$$

$$\Gamma, x : \tau \vdash x : \tau$$

$$\Gamma \vdash \mathsf{K} : \sigma \to \tau \to \sigma$$

$$\Gamma \vdash \mathsf{S} : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho \quad | \quad \Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash t : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash t u : \tau}$$

$$\Gamma,\varphi\,\vdash\,\varphi$$

$$\Gamma \, \vdash \, \varphi \to \psi \to \varphi$$

$$\Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \psi}{\Gamma \vdash \psi}$$

$$\Gamma$$
, $\tau \vdash \tau$

$$\Gamma \vdash \sigma \rightarrow \tau \rightarrow \sigma$$

$$\Gamma \vdash (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho \quad | \quad \Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\Gamma, \varphi \vdash \varphi$$

$$\Gamma \vdash \varphi \to \psi \to \varphi$$

$$\Gamma \vdash (\varphi \rightarrow \psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \chi$$

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

1 if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Hilbert system

$$\Gamma, x : \tau \vdash x : \tau$$

$$\Gamma \vdash \mathsf{K} : \sigma \to \tau \to \sigma$$

$$\Gamma \vdash \mathsf{S} : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho \quad | \quad \Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash t : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash tu : \tau}$$

$$\Gamma,\varphi\,\vdash\,\varphi$$

$$\Gamma \, \vdash \, \varphi \to \psi \to \varphi$$

$$\Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Theorem (Curry-Howard)

- 1 if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$
- 2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

$$ightharpoonup t=x$$
 and $\Gamma=\Gamma',x:\tau$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

▶
$$t = x$$
 and $\Gamma = \Gamma', x : \tau \implies types(\Gamma) = types(\Gamma'), \tau$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

▶
$$t = x$$
 and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_{\mathsf{h}} \tau$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

induction on derivation of judgement
$$\Gamma \vdash t : \tau$$

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_{\mathsf{h}} \tau$
- $ightharpoonup t = K \text{ and } \tau = (\sigma \to \rho \to \sigma)$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ightharpoonup t = x and $\Gamma = \Gamma', x : \tau \implies \text{types}(\Gamma) = \text{types}(\Gamma'), \tau \text{ and thus types}(\Gamma) \vdash_{h} \tau$
- ▶ t = K and $\tau = (\sigma \rightarrow \rho \rightarrow \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_{\mathsf{h}} \tau$
- ▶ t = K and $\tau = (\sigma \to \rho \to \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K
- $ightharpoonup t = S \text{ and } \tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi)$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_{\mathsf{h}} \tau$
- ▶ t = K and $\tau = (\sigma \to \rho \to \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K
- ▶ t = S and $\tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi$ \implies types $(\Gamma) \vdash_h \tau$ by axiom S

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_{\mathsf{h}} \tau$
- ▶ t = K and $\tau = (\sigma \rightarrow \rho \rightarrow \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K
- ▶ t = S and $\tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi$ \implies types $(\Gamma) \vdash_h \tau$ by axiom S
- ▶ t = uv and $\Gamma \vdash u : \sigma \rightarrow \tau$ and $\Gamma \vdash v : \sigma$

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ▶ t = x and $\Gamma = \Gamma', x : \tau$ \implies types $(\Gamma) = \text{types}(\Gamma'), \tau$ and thus types $(\Gamma) \vdash_h \tau$
- ▶ t = K and $\tau = (\sigma \to \rho \to \sigma)$ \implies types(Γ) $\vdash_h \tau$ by axiom K
- ▶ t = S and $\tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi$ \implies types $(\Gamma) \vdash_h \tau$ by axiom S
- ▶ t = uv and $\Gamma \vdash u : \sigma \rightarrow \tau$ and $\Gamma \vdash v : \sigma$
- \implies types(Γ) $\vdash_h \sigma \to \tau$ and types(Γ) $\vdash_h \sigma$ by induction hypothesis

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_\mathsf{h} \tau$
- ▶ t = K and $\tau = (\sigma \rightarrow \rho \rightarrow \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K
- ▶ t = S and $\tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi$ \implies types $(\Gamma) \vdash_h \tau$ by axiom S
- ▶ t = uv and $\Gamma \vdash u : \sigma \rightarrow \tau$ and $\Gamma \vdash v : \sigma$
 - $\implies \ \, \mathsf{types}(\Gamma) \, \vdash_\mathsf{h} \, \sigma \to \tau \, \, \mathsf{and} \, \, \mathsf{types}(\Gamma) \, \vdash_\mathsf{h} \, \sigma \, \, \mathsf{by} \, \mathsf{induction} \, \mathsf{hypothesis}$
 - \implies types(Γ) $\vdash_h \tau$ by modus ponens

2 if $\Gamma \vdash_{\mathsf{h}} \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

② if $\Gamma \vdash_{\mathsf{h}} \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: $\ \varphi$ is obtained by modus ponens

2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types(Δ) = Γ

Proof

induction on derivation of $\Gamma \vdash_h \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

WS 2023

② if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$ and $\Delta_2 \vdash t_2 : \psi$

for some t_1 , Δ_1 , t_2 , Δ_2 with types $(\Delta_1) = \text{types}(\Delta_2) = \Gamma$

2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$ and $\Delta_2 \vdash t_2 : \psi$

for some
$$t_1$$
, Δ_1 , t_2 , Δ_2 with $\mathsf{types}(\Delta_1) = \mathsf{types}(\Delta_2) = \Gamma$

suppose
$$\Gamma = \{\chi_1, \dots, \chi_n\}$$

② if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types(Δ) = Γ

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$ and $\Delta_2 \vdash t_2 : \psi$

for some t_1 , Δ_1 , t_2 , Δ_2 with $\mathsf{types}(\Delta_1) = \mathsf{types}(\Delta_2) = \Gamma$

suppose
$$\Gamma = \{\chi_1, \dots, \chi_n\}$$

$$\Delta_1 = \{x_1 : \chi_1, \dots, x_n : \chi_n\} \text{ and } \Delta_2 = \{y_1 : \chi_1, \dots, y_n : \chi_n\}$$

② if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$ and $\Delta_2 \vdash t_2 : \psi$

for some t_1 , Δ_1 , t_2 , Δ_2 with $\mathsf{types}(\Delta_1) = \mathsf{types}(\Delta_2) = \Gamma$

suppose
$$\Gamma = \{\chi_1, \ldots, \chi_n\}$$

$$\Delta_1 = \{x_1 : \chi_1, \dots, x_n : \chi_n\} \text{ and } \Delta_2 = \{y_1 : \chi_1, \dots, y_n : \chi_n\}$$

let t_2' be obtained from t_2 by replacing every y_i with x_i

2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{\mathsf{h}} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis:
$$\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$$
 and $\Delta_2 \vdash t_2 : \psi$

for some t_1 , Δ_1 , t_2 , Δ_2 with types (Δ_1) = types (Δ_2) = Γ suppose $\Gamma = \{\chi_1, \ldots, \chi_n\}$

$$\Delta_1=\{x_1:\chi_1,\ldots,x_n:\chi_n\}$$
 and $\Delta_2=\{y_1:\chi_1,\ldots,y_n:\chi_n\}$

let t_2^\prime be obtained from t_2 by replacing every y_i with x_i

$$\Delta_1 \vdash t_2' : \psi$$

2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{h} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis:
$$\Delta_1 \vdash t_1 : \psi \to \varphi$$
 and $\Delta_2 \vdash t_2 : \psi$ for some t_1 , Δ_1 , t_2 , Δ_2 with types(Δ_1) = types(Δ_2) = Γ

suppose
$$\Gamma = \{\chi_1, \dots, \chi_n\}$$

$$\Delta_1 = \{x_1: \chi_1, \dots, x_n: \chi_n\} \text{ and } \Delta_2 = \{y_1: \chi_1, \dots, y_n: \chi_n\}$$

let t_2' be obtained from t_2 by replacing every y_i with x_i

$$\Delta_1 \, dash \, t_2' : \psi \,$$
 and thus $\, \Delta_1 \, dash \, t_1 \, t_2' : arphi \,$

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

①
$$\varphi \rightarrow \psi \rightarrow \varphi$$

②
$$(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

- ① $\varphi \to \psi \to \varphi$
- ② $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

2 $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

8 $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

2 $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

 8 $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

② $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

 $\mathfrak{T} \quad \psi \to \varphi \vee \psi$

8 $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

Remarks

 $ightharpoonup
eg \varphi$ is shortcut for $\varphi \to \bot$

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

 $9 \quad \perp \rightarrow \varphi$

② $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

 (8) $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

Remarks

- $ightharpoonup
 eg \varphi$ is shortcut for $\varphi \to \bot$
- ▶ adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

6 $\varphi \to \varphi \lor \psi$

(2) $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

(7) $\psi \rightarrow \varphi \lor \psi$

 $9 \quad \perp \rightarrow \varphi$

 (8) $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

5 $\varphi \to \psi \to \varphi \land \psi$

Remarks

- $ightharpoonup
 eg \varphi$ is shortcut for $\varphi \to \bot$
- \blacktriangleright adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic
- intuitionistic propositional logic is known as IPC in literature

Hilbert system for IPC is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Hilbert system for IPC is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Hilbert system for IPC is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Theorem

problem instance: formula φ

question: $\vdash_h \varphi$?

WS 2023

universität innsbruck

is decidable

Hilbert system for IPC is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Theorem

problem instance: formula φ

question: $\vdash_h \varphi$?

is decidable and PSPACE-complete

 $\varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$

WS 2023

 $-\varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$

Remark

Glivenko's theorem does not extend to predicate logic

Remark

Glivenko's theorem does not extend to predicate logic

Definition (Gödel's Negative Translation)

WS 2023

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Remark

Glivenko's theorem does not extend to predicate logic

Definition (Gödel's Negative Translation)

 $\triangleright p^n = \neg \neg p$ for propositional atoms p

WS 2023

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Remark

Glivenko's theorem does not extend to predicate logic

- $ightharpoonup p^n = \neg \neg p$ for propositional atoms p
- $(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Remark

Glivenko's theorem does not extend to predicate logic

- $ho^n = \neg \neg p$ for propositional atoms p
- $(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$
- $(\varphi \vee \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \wedge \neg \psi^{\mathsf{n}})$

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Remark

Glivenko's theorem does not extend to predicate logic

$$p^n = \neg \neg p$$
 for propositional atoms p

$$\blacktriangleright (\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$$

$$(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$$

$$(\varphi \lor \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \land \neg \psi^{\mathsf{n}})$$

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Remark

Glivenko's theorem does not extend to predicate logic

$$p^n = \neg \neg p$$
 for propositional atoms p

$$\neg \neg p$$
 for propositional atoms

$$(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$$

$$(\varphi \vee \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \wedge \neg \psi^{\mathsf{n}})$$

$$\blacktriangleright (\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$$

$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$

Theorem (Glivenko 1929)

Remark

Glivenko's theorem does not extend to predicate logic

Definition (Gödel's Negative Translation)

▶
$$p^n = \neg \neg p$$
 for propositional atoms p

$$(\varphi \vee \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \wedge \neg \psi^{\mathsf{n}})$$

WS 2023

 $\triangleright (\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$

$$(\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$$

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \varphi^{\mathsf{n}}$$

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Important Concepts

- φⁿ
- \vdash_{h}
- Curry-Howard isomorphism
- finite model property

- Glivenko's theorem
- Gödel's negative translation
- Hilbert system
- intuitionistic propositional logic

Important Concepts

- $\triangleright \varphi^{\mathsf{n}}$
- \vdash_{h}
- Curry-Howard isomorphism
- finite model property

- Glivenko's theorem
- Gödel's negative translation
- Hilbert system
- intuitionistic propositional logic

homework for January 15