

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Theorem (Strong Normalization)

typable CL-terms are terminating (SN)

Definition

typable CL-term t is strongly computable (SC) if

Computability Theory

- t has atomic type $\tau \in \mathbb{V} \cup \mathbb{C}$ and is SN
- ▶ t has type $\sigma \rightarrow \tau$ and tu is SC whenever $u : \sigma$ is SC

Lemma

every typable term is SC and every SC term is terminating

Theorem

problem

instance: CL-term t question: is t typable?

is decidable

Definition

principal type of combinator t is any type σ such that

- \bigcirc \vdash $t:\sigma$
- if $\vdash t : \tau$ then τ is substitution instance of σ

Theorem

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ , τ , ρ)

$$\overline{\mathsf{I}:\sigma\to\sigma}\qquad \overline{\mathsf{K}:\sigma\to\tau\to\sigma}$$

$$\overline{\mathsf{I}:\sigma o\sigma}$$
 $\overline{\mathsf{K}:\sigma o au o\sigma}$ $\overline{\mathsf{S}:(
ho o\sigma o au) o(
ho o\sigma) o
ho o au}$

and unification algorithm

Definition

type τ is inhabited if $\vdash t : \tau$ for some combinator t

Theorem

problem instance: type τ

question: is τ inhabited?

is decidable

 $t:\sigma\to\tau$ $u:\sigma$

Intuitionistic Propositional Logic

- ▶ basic connectives \rightarrow \land \lor \bot
- derived connectives
 - $ightharpoonup
 eg \varphi$ abbreviates $\varphi \to \bot$
 - ▶ \top abbreviates $\bot \to \bot$
 - $\varphi \leftrightarrow \psi$ abbreviates $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- ightharpoonup implication fragment contains only ightarrow

Definition

Kripke model is triple $C = \langle C, \leq, \Vdash \rangle$ with

- ► non-empty set *C* of states
- ▶ partial order ≤ on C
- ightharpoonup binary relation \Vdash between elements of C and propositional atoms

such that $d \Vdash p$ whenever $c \Vdash p$ and $c \leqslant d$

Definition

Kripke model $C = \langle C, \leq, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \varphi \land \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- $\blacktriangleright c \Vdash \varphi \lor \psi \text{ if and only if } c \Vdash \varphi \text{ or } c \Vdash \psi$
- ▶ $c \Vdash \varphi \rightarrow \psi$ if and only if $d \Vdash \psi$ for all $d \geqslant c$ with $d \Vdash \varphi$
- **►** *C* | *y* ⊥

Terminology

c forces p if $c \Vdash p$

Definition

Kripke model $C = \langle C, \leqslant, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- ▶ $\mathcal{C} \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in C$

Definition

 $\Gamma \Vdash \varphi$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C} = \langle \mathcal{C}, \leqslant, \Vdash \rangle$ and $c \in \mathcal{C}$

Lemma (Monotonicity)

if $c \leqslant d$ and $c \Vdash \varphi$ then $d \Vdash \varphi$

Lemma

if $\Vdash \varphi \lor \psi$ then $\Vdash \varphi$ or $\Vdash \psi$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, . . .

Outline

1. Summary of Previous Lecture

2. Evaluation

- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index

WS 2023 Computability Theory

lecture 12

2. Evaluation

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

Definitions

- ► derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
 - axiom or
 - ▶ member of Γ or
 - ▶ follows from earlier formulas by modus ponens
- φ is consequence of set Γ ($\Gamma \vdash_h \varphi$) if φ is last line of derivation from Γ
- ▶ proof in Hilbert system is derivation from ∅
- ▶ formula φ is theorem ($\vdash_h \varphi$) if φ is consequence of \varnothing

Example

$$\varphi \to \varphi$$
 is theorem:

1
$$(\varphi \to (\varphi \to \varphi) \to \varphi) \to (\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$$
 axiom
2 $\varphi \to (\varphi \to \varphi) \to \varphi$ axiom

3 $(\varphi \to \varphi \to \varphi) \to \varphi \to \varphi$ 4 $\varphi \rightarrow \varphi \rightarrow \varphi$

5 $\varphi \rightarrow \varphi$

modus ponens 1, 2 axiom

modus ponens 3, 4

Deduction Theorem

$$\Gamma \cup \{\varphi\} \, \vdash_\mathsf{h} \, \psi \quad \iff \quad \Gamma \, \vdash_\mathsf{h} \, \varphi \to \psi$$

Proof (\Leftarrow)

- ▶ suppose $\Gamma \vdash_h \varphi \rightarrow \psi$
- $ightharpoonup \Gamma \cup \{\varphi\} \vdash_{h} \varphi \rightarrow \psi$ and $\Gamma \cup \{\varphi\} \vdash_{h} \varphi \implies \Gamma \cup \{\varphi\} \vdash_{h} \psi$ by modus ponens

Example

$$(\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$$
 is theorem:

- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi, \varphi\} \ \vdash_{\mathsf{h}} \ \chi$
 - 1 $\varphi \to \psi \to \chi$
 - Y
 - 3 $\psi o \chi$ modus ponens 1, 2
 - 4 ψ
 - 5 χ

modus ponens 3, 4

- ▶ $\{\varphi \to \psi \to \chi, \psi\}$ $\vdash_{\mathsf{h}} \varphi \to \chi$ by deduction theorem
- ▶ $\{\varphi \to \psi \to \chi\}$ $\vdash_{\mathsf{h}} \psi \to \varphi \to \chi$ by deduction theorem
- ▶ $\vdash_h (\varphi \to \psi \to \chi) \to \psi \to \varphi \to \chi$ by deduction theorem

Proof (\Longrightarrow)

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- ▶ let Π_1 : χ_1, \ldots, χ_n be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- ▶ consider new sequence Π_2 : $\varphi \to \chi_1, \dots, \varphi \to \chi_n$
- ightharpoonup insert extra lines into Π_2 and use modus ponens, as follows:
 - ① if χ_i is axiom or member of Γ insert χ_i and $\chi_i \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
 - ② if $\chi_i = \varphi$ insert steps of proof of $\varphi \to \varphi$ before it
 - ③ if χ_i is derived with modus ponens from χ_j and χ_k with j,k < i then $\chi_k = (\chi_j \to \chi_i)$ insert $(\varphi \to \chi_j \to \chi_i) \to (\varphi \to \chi_j) \to \varphi \to \chi_i$ and $(\varphi \to \chi_j) \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
- lacktriangleright resulting sequence is derivation of $\varphi o \psi$ from Γ

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Proof (\Longrightarrow)

suppose $\Gamma \vdash_h \varphi$, we prove $\Gamma \Vdash \varphi$ by induction on length of derivation of $\Gamma \vdash_h \varphi$:

- $\blacktriangleright \ \varphi \in \Gamma$
 - $\Gamma \Vdash \varphi$ holds trivially
- $\qquad \qquad \varphi = (\psi_1 \to \psi_2 \to \psi_1)$
 - $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$
- - $\Vdash \varphi$ by definition of \Vdash and thus also $\Gamma \Vdash \varphi$
- ightharpoonup arphi is obtained by modus ponens
 - $\Gamma \vdash_{\mathsf{h}} \psi$ and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$ are shorter derivations
 - $\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \rightarrow \varphi$ by induction hypothesis
 - $\Gamma \Vdash \varphi$ by definition of \Vdash

Proof (\Leftarrow)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\implies$$
 let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$

 $\psi_1 \in \Delta' \in C$ and thus $\Delta' \Vdash \psi_1$ by induction hypothesis

$$\Delta' \Vdash \psi_2$$
 because $\Delta \subseteq \Delta'$ and thus $\psi_2 \in \Delta'$ by induction hypothesis

$$\Delta, \psi_1 \vdash_h \psi_2$$

 $\Delta \vdash_{\mathsf{h}} \psi$ by deduction theorem

Proof (\Leftarrow , cont'd)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle C, \subseteq, \Vdash \rangle$ with

- $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

 $\text{claim:} \quad \Delta \, \Vdash \psi \iff \; \psi \in \Delta \quad \text{for all } \; \Delta \in \textit{C} \; \text{ and implicational formulas } \; \psi$

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

$$\longleftarrow$$
 let $\psi \in \Delta$ and consider state $\Delta' \supseteq \Delta$ with $\Delta' \Vdash \psi_1$

$$\psi_1 \in \Delta'$$
 by induction hypothesis and thus $\Delta' \vdash_h \psi_1$

$$\Delta' \vdash_h \psi$$
 because $\Delta \vdash_h \psi$ and $\Delta \subseteq \Delta'$

$$\Delta' \vdash_h \psi_2$$
 by modus ponens and thus $\psi_2 \in \Delta'$

$$\Delta' \Vdash \psi_2$$
 by induction hypothesis and thus $\Delta' \Vdash \psi$ by definition of \Vdash

$\mathsf{Proof} \; (\Longleftarrow, \mathsf{cont'd})$

suppose $\Gamma \vdash_h \varphi$ does not hold

define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with

- $\blacktriangleright \ \ \textit{C} = \{ \Delta \mid \Gamma \subseteq \Delta \ \ \text{and} \ \ \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

 $\text{define } \Delta = \{\psi \mid \Gamma \vdash_{\mathsf{h}} \psi\}$

 $\Delta \in \textbf{\textit{C}} \text{ and } \varphi \not\in \Delta \text{ and thus } \Gamma \subseteq \Delta \text{ and } \Delta \not\Vdash \varphi$

 $\Gamma \not\Vdash \varphi$ by definition of \Vdash

Example (Peirce's Law)

$$otagert_h \; ((p
ightarrow q)
ightarrow p)
ightarrow p \;\; ext{because of Kripke model} \;\; igcircle{} \;\; -1$$

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Hilbert system

$$\Gamma, x : \tau \vdash x : \tau$$

$$\Gamma \vdash \mathsf{K} : \sigma \to \tau \to \sigma$$

$$\Gamma \vdash \mathsf{S} : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho \quad | \quad \Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash t : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash tu : \tau}$$

$$\Gamma,\varphi\,\vdash\,\varphi$$

$$\Gamma \, \vdash \, \varphi \to \psi \to \varphi$$

$$\Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$$

$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Theorem (Curry-Howard)

- 1 if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$
- 2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Theorem (Curry-Howard)

• if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$

Proof

induction on derivation of judgement $\Gamma \vdash t : \tau$

- ▶ t = x and $\Gamma = \Gamma', x : \tau \implies \mathsf{types}(\Gamma) = \mathsf{types}(\Gamma'), \tau$ and thus $\mathsf{types}(\Gamma) \vdash_\mathsf{h} \tau$
- ▶ t = K and $\tau = (\sigma \rightarrow \rho \rightarrow \sigma)$ \implies types $(\Gamma) \vdash_h \tau$ by axiom K
- ▶ t = S and $\tau = ((\sigma \to \rho \to \chi) \to (\sigma \to \rho) \to \sigma \to \chi$ \implies types $(\Gamma) \vdash_h \tau$ by axiom S
- ▶ t = uv and $\Gamma \vdash u : \sigma \rightarrow \tau$ and $\Gamma \vdash v : \sigma$
 - $\implies \ \, \mathsf{types}(\Gamma) \, \vdash_\mathsf{h} \, \sigma \to \tau \, \, \mathsf{and} \, \, \mathsf{types}(\Gamma) \, \vdash_\mathsf{h} \, \sigma \, \, \mathsf{by} \, \mathsf{induction} \, \mathsf{hypothesis}$
 - \implies types(Γ) $\vdash_h \tau$ by modus ponens

Theorem (Curry-Howard)

2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

induction on derivation of $\Gamma \vdash_{h} \varphi$

interesting case: φ is obtained by modus ponens

$$\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi$$

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \rightarrow \varphi$ and $\Delta_2 \vdash t_2 : \psi$

for some t_1 , Δ_1 , t_2 , Δ_2 with types(Δ_1) = types(Δ_2) = Γ

suppose $\Gamma = \{ \chi_1, \dots, \chi_n \}$

$$\Delta_1 = \{x_1 : \chi_1, \dots, x_n : \chi_n\} \text{ and } \Delta_2 = \{y_1 : \chi_1, \dots, y_n : \chi_n\}$$

let t_2' be obtained from t_2 by replacing every y_i with x_i

$$\Delta_1 \, dash \, t_2' : \psi \,$$
 and thus $\, \Delta_1 \, dash \, t_1 \, t_2' : arphi \,$

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

 $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

(8) $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

Remarks

- ightharpoonup is shortcut for $\varphi \to \bot$
- ▶ adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic
- ▶ intuitionistic propositional logic is known as IPC in literature

Theorem

Hilbert system for IPC is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Theorem

problem instance: formula φ

question: $\vdash_h \varphi$?

WS 2023

is decidable and PSPACE-complete

$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$

Theorem (Glivenko 1929)

Remark

Glivenko's theorem does not extend to predicate logic

Definition (Gödel's Negative Translation)

▶
$$p^n = \neg \neg p$$
 for propositional atoms p

$$(\varphi \vee \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \wedge \neg \psi^{\mathsf{n}})$$

WS 2023

 $\triangleright (\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$

$$(\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$$

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \varphi^{\mathsf{n}}$$

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Important Concepts

- $\triangleright \varphi^{\mathsf{n}}$
- \vdash_{h}
- Curry-Howard isomorphism
- finite model property

- Glivenko's theorem
- Gödel's negative translation
- Hilbert system
- intuitionistic propositional logic

homework for January 15