

WS 2023 lecture 12

Computability Theory

Aart Middeldorp

Outline

- 1. Summary of Previous Lecture
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

universität WS 2023 Computability Theory lecture 12

Theorem (Strong Normalization)

typable CL-terms are terminating (SN)

Definition

typable CL-term t is strongly computable (SC) if

- *t* has atomic type $\tau \in \mathbb{V} \cup \mathbb{C}$ and is SN
- ▶ t has type $\sigma \rightarrow \tau$ and tu is SC whenever $u : \sigma$ is SC

Lemma

every typable term is SC and every SC term is terminating

universität WS 2023 Computability Theory lecture 12 1. Summary of Previous Lecture

```
3/30
```

ieorem
oblem
instanco

instance: CL-term t question: is t typable?

is decidable

pr

Definition

principal type of combinator t is any type σ such that

(1) $\vdash t: \sigma$

② if $\vdash t : \tau$ then τ is substitution instance of σ

Theorem

every typable combinator has principal type

Type Inference

principle types can be computed by typing rules of TA (with type variables σ , τ , ρ)

$$\frac{1}{1: \sigma \to \sigma} \qquad \frac{1}{K: \sigma \to \tau \to \sigma} \qquad \frac{1}{S: (\sigma \to \sigma \to \sigma)}$$

 $\frac{t:\sigma \to \tau}{t\,u:\tau} \qquad \frac{t:\sigma \to \tau}{t\,u:\tau}$

 $u:\sigma$

and unification algorithm

Definition

type τ is inhabited if $\vdash t : \tau$ for some combinator t

Theorem	
problem	
instance: type $ au$	
question: is τ inhabited ?	
is decidable	
Inversität WS 2023 Computability Theory lecture 12 1. Summary of Previous Lecture	5/30

Intuitionistic Propositional Logic

- \blacktriangleright basic connectives $\ \rightarrow \ \land \ \lor \ \bot$
- derived connectives
 - $\blacktriangleright \ \neg \varphi \qquad \text{abbreviates} \ \varphi \to \bot$
 - ▶ \top abbreviates $\bot \rightarrow \bot$
 - $\varphi \leftrightarrow \psi$ abbreviates $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
- \blacktriangleright implication fragment contains only \rightarrow

Definition

Kripke model is triple $C = \langle C, \leq, \Vdash \rangle$ with

- non-empty set C of states
- partial order \leq on C
- binary relation \Vdash between elements of *C* and propositional atoms

such that $d \Vdash p$ whenever $c \Vdash p$ and $c \leqslant d$

universität WS 2023 Computability Theory lecture 12 1. Summary of Previous Lecture

Definition

Kripke model $\mathcal{C} = \langle \mathcal{C}, \leqslant, \Vdash angle$, $c \in \mathcal{C}$

- $c \Vdash \varphi \land \psi$ if and only if $c \Vdash \varphi$ and $c \Vdash \psi$
- ► $c \Vdash \varphi \lor \psi$ if and only if $c \Vdash \varphi$ or $c \Vdash \psi$
- $c \Vdash \varphi \rightarrow \psi$ if and only if $d \Vdash \psi$ for all $d \ge c$ with $d \Vdash \varphi$
- ► c ⊮ ⊥

Terminology

c forces p if $c \Vdash p$

Definition

Kripke model $C = \langle C, \leqslant, \Vdash \rangle$, $c \in C$

- ▶ $c \Vdash \Gamma$ if $c \Vdash \varphi$ for all $\varphi \in \Gamma$
- ▶ $\mathcal{C} \Vdash \varphi$ if $c \Vdash \varphi$ for all $c \in C$

Definition

 $\[\Gamma \Vdash \varphi \]$ if $c \Vdash \varphi$ whenever $c \Vdash \Gamma$ for all Kripke models $\mathcal{C} = \langle C, \leqslant, \Vdash \rangle$ and $c \in C$

Lemma (Monotonicity)

if $c \leq d$ and $c \Vdash \varphi$ then $d \Vdash \varphi$

Lemma

 $\mathsf{if}\Vdash\varphi\lor\psi\;\mathsf{then}\Vdash\varphi\;\mathsf{or}\Vdash\psi$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

universität WS 202	3 Computability Theory	lecture 12	1. Summary of Previous Lecture	Topics
--------------------	------------------------	------------	--------------------------------	--------

```
9/30
```

Outline

1. Summary of Previous Lecture

2. Evaluation

- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

universität WS 2023 Computability Theory lecture 12
 2. Evaluation

Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$\overline{\varphi \to \psi \to \varphi}$	$(\varphi \rightarrow$	$\psi \rightarrow$	$\chi) \rightarrow$	$(\varphi \rightarrow$	$\psi) \rightarrow$	$\varphi \to \chi$

$\frac{\varphi \qquad \varphi \to \psi}{\psi}$

Definitions

- derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that each formula is
- axiom or
- member of Γ or
- follows from earlier formulas by modus ponens
- φ is consequence of set Γ ($\Gamma \vdash_{h} \varphi$) if φ is last line of derivation from Γ
- ▶ proof in Hilbert system is derivation from ∅
- ▶ formula φ is theorem ($\vdash_{h} \varphi$) if φ is consequence of \varnothing

Example

$\varphi \rightarrow \varphi$ is theorem :

1	$(\varphi ightarrow (\varphi ightarrow \varphi) ightarrow \varphi) ightarrow (\varphi ightarrow \varphi ightarrow \varphi) ightarrow \varphi ightarrow \varphi$	axiom
2	arphi ightarrow (arphi ightarrow arphi) ightarrow arphi	axiom
3	$(\varphi ightarrow \varphi ightarrow \varphi) ightarrow \varphi ightarrow \varphi$	modus ponens 1, 2
4	$\varphi \to \varphi \to \varphi$	axiom
5	$\varphi \rightarrow \varphi$	modus ponens 3, 4

Deduction Theorem

$\mathsf{\Gamma} \cup \{\varphi\} \vdash_\mathsf{h} \psi \quad \Longleftrightarrow \quad \mathsf{\Gamma} \vdash_\mathsf{h} \varphi \to \psi$

Proof (⇐)

- ► suppose $\Gamma \vdash_{\mathsf{h}} \varphi \rightarrow \psi$
- $\blacktriangleright \ \ \Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \varphi \rightarrow \psi \ \text{and} \ \ \Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \varphi \implies \ \ \Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi \ \text{by modus ponens}$

universitat innsbruck	WS 2023	Computability Theory	lecture 12	3. Hilbert Systems
--------------------------	---------	----------------------	------------	--------------------

Example

 $(\varphi \rightarrow \psi \rightarrow \chi) \rightarrow \psi \rightarrow \varphi \rightarrow \chi$ is theorem:

- $\begin{array}{c|c} \bullet & \{\varphi \rightarrow \psi \rightarrow \chi, \psi, \varphi\} \vdash_{\mathsf{h}} \chi \\ & 1 \quad \varphi \rightarrow \psi \rightarrow \chi \\ & 2 \quad \varphi \\ & 3 \quad \psi \rightarrow \chi \\ & 4 \quad \psi \\ & 5 \quad \chi \end{array} \end{array} \ \mbox{modus ponens 1, 2}$
- $\blacktriangleright \ \{\varphi \to \psi \to \chi, \psi\} \ \vdash_{\mathsf{h}} \ \varphi \to \chi \qquad \text{ by deduction theorem }$
- $\blacktriangleright \ \{\varphi \to \psi \to \chi\} \vdash_{\mathsf{h}} \psi \to \varphi \to \chi \quad \text{ by deduction theorem }$
- ▶ $\vdash_{\mathsf{h}} (\varphi \rightarrow \psi \rightarrow \chi) \rightarrow \psi \rightarrow \varphi \rightarrow \chi$ by deduction theorem
 - universität WS 2023 Computability Theory lecture 12 3. Hilbert Systems

Proof (\Longrightarrow)

- ▶ suppose $\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi$
- let $\Pi_1: \chi_1, \ldots, \chi_n$ be derivation of ψ from $\Gamma \cup \{\varphi\}$, so $\chi_n = \psi$
- consider new sequence $\Pi_2: \varphi \to \chi_1, \dots, \varphi \to \chi_n$
- \blacktriangleright insert extra lines into Π_2 and use modus ponens, as follows:
 - (1) if χ_i is axiom or member of Γ

insert χ_i and $\chi_i \rightarrow \varphi \rightarrow \chi_i$ before $\varphi \rightarrow \chi_i$

(2) if $\chi_i = \varphi$

insert steps of proof of $\varphi \rightarrow \varphi$ before it

- (3) if χ_i is derived with modus ponens from χ_j and χ_k with j, k < i then $\chi_k = (\chi_j \to \chi_i)$ insert $(\varphi \to \chi_j \to \chi_i) \to (\varphi \to \chi_j) \to \varphi \to \chi_i$ and $(\varphi \to \chi_j) \to \varphi \to \chi_i$ before $\varphi \to \chi_i$
- $\blacktriangleright\,$ resulting sequence is derivation of $\,\varphi \rightarrow \psi\,$ from $\,\Gamma\,$

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

 $\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$

ig| Proof (\Longrightarrow)

 $\text{suppose } \Gamma \vdash_{\mathsf{h}} \varphi, \text{ we prove } \Gamma \Vdash \varphi \text{ by induction on length of derivation of } \Gamma \vdash_{\mathsf{h}} \varphi:$

- ▶ $\varphi \in \Gamma$
- $\Gamma \Vdash \varphi$ holds trivially
- $\blacktriangleright \varphi = (\psi_1 \to \psi_2 \to \psi_1)$
- $\Vdash \varphi\,$ by definition of \Vdash and thus also ${\sf \Gamma} \Vdash \varphi\,$
- $\blacktriangleright \varphi = ((\psi_1 \to \psi_2 \to \psi_3) \to (\psi_1 \to \psi_2) \to \psi_1 \to \psi_3)$
- $\Vdash \varphi \text{ by definition of } \Vdash \text{ and thus also } \Gamma \Vdash \varphi$
- $\blacktriangleright \ \varphi$ is obtained by modus ponens

 $\Gamma \vdash_{\mathsf{h}} \psi$ and $\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi$ are shorter derivations

 $\Gamma \Vdash \psi$ and $\Gamma \Vdash \psi \rightarrow \varphi$ by induction hypothesis

 $\Gamma \Vdash \varphi$ by definition of \Vdash

universität WS 2023 Computability Theory lecture 12 3. Hilbert Systems

Proof (⇐)

suppose $\Gamma \vdash_{h} \varphi$ does not hold

- define Kripke model $C = \langle C, \subseteq, \Vdash \rangle$ with
- $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- ▶ $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

proof of claim (induction on ψ): consider $\psi = (\psi_1 \rightarrow \psi_2)$

- \implies let $\Delta \Vdash \psi$ and define $\Delta' = \{\chi \mid \Delta, \psi_1 \vdash_h \chi\}$
 - $\psi_1 \in \Delta' \in C$ and thus $\Delta' \Vdash \psi_1$ by induction hypothesis
 - $\Delta' \Vdash \psi_2$ because $\Delta \subseteq \Delta'$ and thus $\psi_2 \in \Delta'$ by induction hypothesis
 - $\Delta, \psi_1 \vdash_{\mathsf{h}} \psi_2$
 - $\Delta \vdash_{\mathsf{h}} \psi$ by deduction theorem

universität universität unsbruck WS 2023 Computability Theory lecture 12 3. Hilbert Systems

Proof (⇐ , cont'd)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle \mathcal{C}, \subseteq, \Vdash \rangle$ with

• $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$

• $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

proof of claim: consider $\psi = (\psi_1 \rightarrow \psi_2)$

 $\quad \longleftarrow \quad \mathsf{let} \ \psi \in \Delta \ \mathsf{and} \ \mathsf{consider} \ \mathsf{state} \ \Delta' \supseteq \Delta \ \mathsf{with} \ \Delta' \Vdash \psi_1$

 $\psi_{1} \in \Delta'$ by induction hypothesis and thus $\Delta' \vdash_{\mathsf{h}} \psi_{1}$

 $\Delta' \vdash_{\mathsf{h}} \psi \text{ because } \Delta \vdash_{\mathsf{h}} \psi \text{ and } \Delta \subseteq \Delta'$

- $\Delta' \vdash_{\mathsf{h}} \psi_2$ by modus ponens and thus $\psi_2 \in \Delta'$
- $\Delta' \Vdash \psi_2$ by induction hypothesis and thus $\Delta' \Vdash \psi$ by definition of \Vdash

Proof (⇐ , cont'd)

suppose $\Gamma \vdash_{\mathsf{h}} \varphi$ does not hold

define Kripke model $\mathcal{C} = \langle \mathcal{C}, \subseteq, \Vdash
angle$ with

- $C = \{ \Delta \mid \Gamma \subseteq \Delta \text{ and } \Delta = \{ \psi \mid \Delta \vdash_{\mathsf{h}} \psi \} \}$
- $\Delta \Vdash p$ if $p \in \Delta$ for propositional atoms p

claim: $\Delta \Vdash \psi \iff \psi \in \Delta$ for all $\Delta \in C$ and implicational formulas ψ

define $\Delta = \{ \psi \mid \Gamma \vdash_{\mathsf{h}} \psi \}$

 $\Delta \in \mathbf{C}$ and $\varphi \notin \Delta$ and thus $\Gamma \subseteq \Delta$ and $\Delta \not\Vdash \varphi$

 $\Gamma \not\Vdash \varphi$ by definition of \Vdash

Example (Peirce's Law)

 $arapsi_h \; ((p o q) o p) o p \;\;$ because of Kripke model $\; ($

17/30

Outline

- **1. Summary of Previous Lecture**
- 2. Evaluation
- 3. Hilbert Systems

4. Curry-Howard Isomorphism

- 5. Intuitionistic Propositional Logic
- 6. Summary

type assignment	Hilbert system
$\Gamma, \boldsymbol{x}: \tau \vdash \boldsymbol{x}: \tau$	$\Gamma, \varphi \vdash \varphi$
$\Gamma \vdash K : \sigma \to \tau \to \sigma$	$\Gamma \vdash \varphi {\rightarrow} \psi {\rightarrow} \varphi$
$\Gamma \vdash S : (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho$	$\Gamma \vdash (\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$
$\frac{\Gamma \vdash t : \sigma \to \tau \qquad \Gamma \vdash u : \sigma}{\Gamma \vdash t u : \tau}$	$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$

Theorem (Curry-Howard)

- **1** if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_{h} \tau$
- **2** if $\Gamma \vdash_{\mathsf{h}} \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

ionsbruck ws 2023 Computability Theory lecture 12 4. Curry-Howard isomorphism	universität	WS 2023	Computability Theory	lecture 12	4. Curry-Howard Isomorphism
---	-------------	---------	----------------------	------------	-----------------------------

21/30

WS 2023 Computability Theory lecture 12 4. Curry-Howard Isomorphism

22/30

Theorem (Curry-Howard)

```
1 if \Gamma \vdash t : \tau then types(\Gamma) \vdash_{h} \tau
```

Proof

induction on derivation of judgement $\Gamma \vdash t : \tau$

- t = x and $\Gamma = \Gamma', x : \tau \implies types(\Gamma) = types(\Gamma'), \tau$ and thus $types(\Gamma) \vdash_{h} \tau$
- t = K and $\tau = (\sigma \rightarrow \rho \rightarrow \sigma) \implies types(\Gamma) \vdash_h \tau$ by axiom K

►
$$t = S$$
 and $\tau = ((\sigma \rightarrow \rho \rightarrow \chi) \rightarrow (\sigma \rightarrow \rho) \rightarrow \sigma \rightarrow \chi \implies types(\Gamma) \vdash_{h} \tau$ by axiom S

- t = uv and $\Gamma \vdash u : \sigma \rightarrow \tau$ and $\Gamma \vdash v : \sigma$
 - \implies types(Γ) $\vdash_h \sigma \rightarrow \tau$ and types(Γ) $\vdash_h \sigma$ by induction hypothesis
 - \implies types(Γ) $\vdash_{h} \tau$ by modus ponens

Theorem (Curry-Howard)

2 if $\Gamma \vdash_{\mathsf{h}} \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Proof

universität innsbruck

```
induction on derivation of \mbox{\sc {F}}\vdash_{\mbox{\sc h}} \varphi interesting case: \ \varphi is obtained by modus ponens
```

```
\Gamma \vdash_{\mathsf{h}} \psi \rightarrow \varphi \text{ and } \Gamma \vdash_{\mathsf{h}} \psi
```

induction hypothesis: $\Delta_1 \vdash t_1 : \psi \to \varphi$ and $\Delta_2 \vdash t_2 : \psi$ for some t_1 , Δ_1 , t_2 , Δ_2 with types $(\Delta_1) = types(\Delta_2) = \Gamma$

suppose
$$\Gamma = \{\chi_1, \ldots, \chi_n\}$$

 $\Delta_1 = \{x_1 : \chi_1, \dots, x_n : \chi_n\}$ and $\Delta_2 = \{y_1 : \chi_1, \dots, y_n : \chi_n\}$

let t'_2 be obtained from t_2 by replacing every y_i with x_i

 $\Delta_1 \vdash t'_2 : \psi$ and thus $\Delta_1 \vdash t_1 t'_2 : \varphi$

Outline

- **1. Summary of Previous Lecture**
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry–Howard Isomorphism

5. Intuitionistic Propositional Logic

6. Summary

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

- (1) $\varphi \to \psi \to \varphi$ (2) $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$
- (3) $\varphi \wedge \psi \rightarrow \varphi$
- (4) $\varphi \land \psi \to \psi$

 $() \quad \psi \to \varphi \lor \psi$ (a) $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$ (9) $\perp \rightarrow \varphi$

(5) $\varphi \to \psi \to \varphi \land \psi$

Remarks

universität innsbruck

- $\neg \varphi$ is shortcut for $\varphi \rightarrow \bot$
- ▶ adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic
- intuitionistic propositional logic is known as IPC in literature

universität innsbruck	WS 2023	Computability Theory	lecture 12	5. Intuitionistic Propositional Logic
--------------------------	---------	----------------------	------------	---------------------------------------

25/30

WS 2023 Computability Theory lecture 12 5. Intuitionistic Propositional Logic

Theorem

Hilbert system for IPC is sound and complete with respect to Kripke models:

 $\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi$ for all finite Kripke models \mathcal{C}

Theorem

problem

instance: formula φ

question: $\vdash_{h} \varphi$?

is decidable and PSPACE-complete

Theorem (Glivenko 1929)

 $\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$

Remark

Glivenko's theorem does not extend to predicate logic

Definition (Gödel's Negative Translation)

- $p^{n} = \neg \neg p$ for propositional atoms p
- $\blacktriangleright (\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$
- $\blacktriangleright (\varphi \lor \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \land \neg \psi^{\mathsf{n}})$

Theorem

$\vdash \varphi \iff \vdash_{\mathsf{h}} \varphi^{\mathsf{n}}$

- $\blacktriangleright \ (\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$
- ▶ | ⁿ = |

28/30

Outline

- **1. Summary of Previous Lecture**
- 2. Evaluation
- 3. Hilbert Systems
- 4. Curry-Howard Isomorphism
- 5. Intuitionistic Propositional Logic
- 6. Summary

Important Concepts ► φⁿ Glivenko's theorem ▶ ⊢_h

- Curry–Howard isomorphism
- finite model property

- Gödel's negative translation
- Hilbert system
- intuitionistic propositional logic

homework for January 15

universität innsbruck WS 2023 Computability Theory lecture 12 6. Summary 29/30

universität innsbruck WS 2023 Computability Theory lecture 12 6. Summary