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Theorem (Strong Normalization)

typable CL–terms are terminating (SN)

Definition

typable CL–term t is strongly computable (SC) if

▶ t has atomic type τ ∈ V ∪ C and is SN

▶ t has type σ → τ and t u is SC whenever u : σ is SC

Lemma

every typable term is SC and every SC term is terminating
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Theorem

problem

instance: CL–term t

question: is t typable ?

is decidable

Definition

principal type of combinator t is any type σ such that

1 ⊢ t : σ

2 if ⊢ t : τ then τ is substitution instance of σ

Theorem

every typable combinator has principal type
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct
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Type Inference

principle types can be computed by typing rules of TA (with type variables σ, τ , ρ)

I : σ → σ K : σ → τ → σ S : (ρ→ σ → τ) → (ρ→ σ) → ρ→ τ

t : σ → τ u : σ

t u : τ

and unification algorithm

Definition

type τ is inhabited if ⊢ t : τ for some combinator t

Theorem

problem

instance: type τ

question: is τ inhabited ?

is decidable
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Intuitionistic Propositional Logic

▶ basic connectives → ∧ ∨ ⊥
▶ derived connectives

▶ ¬φ abbreviates φ→ ⊥
▶ ⊤ abbreviates ⊥ → ⊥
▶ φ↔ ψ abbreviates (φ→ ψ) ∧ (ψ → φ)

▶ implication fragment contains only →

Definition

Kripke model is triple C = ⟨C,⩽, ⊩⟩ with

▶ non-empty set C of states

▶ partial order ⩽ on C

▶ binary relation ⊩ between elements of C and propositional atoms

such that d ⊩ p whenever c ⊩ p and c ⩽ d
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Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ φ ∧ ψ if and only if c ⊩ φ and c ⊩ ψ

▶ c ⊩ φ ∨ ψ if and only if c ⊩ φ or c ⊩ ψ

▶ c ⊩ φ→ ψ if and only if d ⊩ ψ for all d ⩾ c with d ⊩ φ

▶ c ̸⊩ ⊥

Terminology

c forces p if c ⊩ p

Definition

Kripke model C = ⟨C,⩽, ⊩⟩, c ∈ C

▶ c ⊩ Γ if c ⊩ φ for all φ ∈ Γ

▶ C ⊩ φ if c ⊩ φ for all c ∈ C
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Definition

Γ ⊩ φ if c ⊩ φ whenever c ⊩ Γ for all Kripke models C = ⟨C,⩽, ⊩⟩ and c ∈ C

Lemma (Monotonicity)

if c ⩽ d and c ⊩ φ then d ⊩ φ

Lemma

if ⊩ φ ∨ ψ then ⊩ φ or ⊩ ψ
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Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .
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Online Evaluation in Presence

https://lv-analyse.uibk.ac.at/evasys/public/online/index
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Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

φ→ ψ → φ (φ→ ψ → χ) → (φ→ ψ) → φ→ χ

φ φ→ ψ

ψ

Definitions

▶ derivation in Hilbert system from set Γ of formulas is finite sequence of formulas such that
each formula is

▶ axiom or

▶ member of Γ or

▶ follows from earlier formulas by modus ponens

▶ φ is consequence of set Γ (Γ ⊢h φ) if φ is last line of derivation from Γ

▶ proof in Hilbert system is derivation from ∅
▶ formula φ is theorem (⊢h φ) if φ is consequence of ∅
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https://lv-analyse.uibk.ac.at/evasys/public/online/index


Example

φ→ φ is theorem:

1 (φ→ (φ→ φ) → φ) → (φ→ φ→ φ) → φ→ φ axiom

2 φ→ (φ→ φ) → φ axiom

3 (φ→ φ→ φ) → φ→ φ modus ponens 1, 2

4 φ→ φ→ φ axiom

5 φ→ φ modus ponens 3, 4

Deduction Theorem

Γ ∪ {φ} ⊢h ψ ⇐⇒ Γ ⊢h φ→ ψ

Proof ( ⇐= )

▶ suppose Γ ⊢h φ→ ψ

▶ Γ ∪ {φ} ⊢h φ→ ψ and Γ ∪ {φ} ⊢h φ =⇒ Γ ∪ {φ} ⊢h ψ by modus ponens
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Example

(φ→ ψ → χ) → ψ → φ→ χ is theorem:

▶ {φ→ ψ → χ, ψ, φ} ⊢h χ

1 φ→ ψ → χ

2 φ

3 ψ → χ modus ponens 1, 2

4 ψ

5 χ modus ponens 3, 4

▶ {φ→ ψ → χ, ψ} ⊢h φ→ χ by deduction theorem

▶ {φ→ ψ → χ} ⊢h ψ → φ→ χ by deduction theorem

▶ ⊢h (φ→ ψ → χ) → ψ → φ→ χ by deduction theorem
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Proof ( =⇒ )

▶ suppose Γ ∪ {φ} ⊢h ψ

▶ let Π1 : χ1, . . . , χn be derivation of ψ from Γ ∪ {φ}, so χn = ψ

▶ consider new sequence Π2 : φ→ χ1, . . . , φ→ χn

▶ insert extra lines into Π2 and use modus ponens, as follows:

1 if χ i is axiom or member of Γ

insert χ i and χ i → φ→ χ i before φ→ χ i

2 if χ i = φ

insert steps of proof of φ→ φ before it

3 if χ i is derived with modus ponens from χ j and χk with j, k < i then χk = (χ j → χ i)

insert (φ→ χj → χ i) → (φ→ χ j) → φ→ χ i and (φ→ χ j) → φ→ χ i before φ→ χ i

▶ resulting sequence is derivation of φ→ ψ from Γ
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Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

Γ ⊢h φ ⇐⇒ Γ ⊩ φ
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Proof ( =⇒ )

suppose Γ ⊢h φ, we prove Γ ⊩ φ by induction on length of derivation of Γ ⊢h φ:

▶ φ ∈ Γ

Γ ⊩ φ holds trivially

▶ φ = (ψ1 → ψ2 → ψ1)

⊩ φ by definition of ⊩ and thus also Γ ⊩ φ

▶ φ = ((ψ1 → ψ2 → ψ3) → (ψ1 → ψ2) → ψ1 → ψ3)

⊩ φ by definition of ⊩ and thus also Γ ⊩ φ

▶ φ is obtained by modus ponens

Γ ⊢h ψ and Γ ⊢h ψ → φ are shorter derivations

Γ ⊩ ψ and Γ ⊩ ψ → φ by induction hypothesis

Γ ⊩ φ by definition of ⊩
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Proof ( ⇐= )

suppose Γ ⊢h φ does not hold

define Kripke model C = ⟨C,⊆, ⊩⟩ with

▶ C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ ⊢h ψ}}

▶ ∆ ⊩ p if p ∈ ∆ for propositional atoms p

claim: ∆ ⊩ ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

proof of claim (induction on ψ): consider ψ = (ψ1 → ψ2)

=⇒ let ∆ ⊩ ψ and define ∆′ = {χ | ∆, ψ1 ⊢h χ}

ψ1 ∈ ∆′ ∈ C and thus ∆′ ⊩ ψ1 by induction hypothesis

∆′ ⊩ ψ2 because ∆ ⊆ ∆′ and thus ψ2 ∈ ∆′ by induction hypothesis

∆, ψ1 ⊢h ψ2

∆ ⊢h ψ by deduction theorem
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Proof ( ⇐= , cont’d)

suppose Γ ⊢h φ does not hold

define Kripke model C = ⟨C,⊆, ⊩⟩ with

▶ C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ ⊢h ψ}}

▶ ∆ ⊩ p if p ∈ ∆ for propositional atoms p

claim: ∆ ⊩ ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

proof of claim: consider ψ = (ψ1 → ψ2)

⇐= let ψ ∈ ∆ and consider state ∆′ ⊇ ∆ with ∆′ ⊩ ψ1

ψ1 ∈ ∆′ by induction hypothesis and thus ∆′ ⊢h ψ1

∆′ ⊢h ψ because ∆ ⊢h ψ and ∆ ⊆ ∆′

∆′ ⊢h ψ2 by modus ponens and thus ψ2 ∈ ∆′

∆′ ⊩ ψ2 by induction hypothesis and thus ∆′ ⊩ ψ by definition of ⊩
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Proof ( ⇐= , cont’d)

suppose Γ ⊢h φ does not hold

define Kripke model C = ⟨C,⊆, ⊩⟩ with

▶ C = {∆ | Γ ⊆ ∆ and ∆ = {ψ | ∆ ⊢h ψ}}

▶ ∆ ⊩ p if p ∈ ∆ for propositional atoms p

claim: ∆ ⊩ ψ ⇐⇒ ψ ∈ ∆ for all ∆ ∈ C and implicational formulas ψ

define ∆ = {ψ | Γ ⊢h ψ}

∆ ∈ C and φ /∈ ∆ and thus Γ ⊆ ∆ and ∆ ̸⊩ φ

Γ ̸⊩ φ by definition of ⊩

Example (Peirce’s Law)

⊬h ((p → q) → p) → p because of Kripke model p
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type assignment Hilbert system

Γ, x : τ ⊢ x : τ Γ, φ ⊢ φ

Γ ⊢ K : σ → τ → σ Γ ⊢ φ→ ψ → φ

Γ ⊢ S : (σ → τ → ρ) → (σ → τ) → σ → ρ Γ ⊢ (φ→ ψ → χ) → (φ→ ψ) → φ→ χ

Γ ⊢ t : σ → τ Γ ⊢ u : σ

Γ ⊢ t u : τ

Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ

Theorem (Curry–Howard)

1 if Γ ⊢ t : τ then types(Γ) ⊢h τ

2 if Γ ⊢h φ then ∆ ⊢ t : φ for some t and ∆ with types(∆) = Γ
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Theorem (Curry–Howard)

1 if Γ ⊢ t : τ then types(Γ) ⊢h τ

Proof

induction on derivation of judgement Γ ⊢ t : τ

▶ t = x and Γ = Γ′, x : τ =⇒ types(Γ) = types(Γ′), τ and thus types(Γ) ⊢h τ

▶ t = K and τ = (σ → ρ→ σ) =⇒ types(Γ) ⊢h τ by axiom K

▶ t = S and τ = ((σ → ρ→ χ) → (σ → ρ) → σ → χ =⇒ types(Γ) ⊢h τ by axiom S

▶ t = u v and Γ ⊢ u : σ → τ and Γ ⊢ v : σ

=⇒ types(Γ) ⊢h σ → τ and types(Γ) ⊢h σ by induction hypothesis

=⇒ types(Γ) ⊢h τ by modus ponens
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Theorem (Curry–Howard)

2 if Γ ⊢h φ then ∆ ⊢ t : φ for some t and ∆ with types(∆) = Γ

Proof

induction on derivation of Γ ⊢h φ

interesting case: φ is obtained by modus ponens

Γ ⊢h ψ → φ and Γ ⊢h ψ

induction hypothesis: ∆1 ⊢ t1 : ψ → φ and ∆2 ⊢ t2 : ψ

for some t1, ∆1, t2, ∆2 with types(∆1) = types(∆2) = Γ

suppose Γ = {χ1, . . . , χn}

∆1 = {x1 : χ1, . . . , xn : χn} and ∆2 = {y1 : χ1, . . . , yn : χn}

let t′2 be obtained from t2 by replacing every yi with xi

∆1 ⊢ t′2 : ψ and thus ∆1 ⊢ t1 t′2 : φ
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Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

1 φ→ ψ → φ

2 (φ→ ψ → χ) → (φ→ ψ) → φ→ χ

3 φ ∧ ψ → φ

4 φ ∧ ψ → ψ

5 φ→ ψ → φ ∧ ψ

6 φ→ φ ∨ ψ

7 ψ → φ ∨ ψ

8 (φ→ χ) → (ψ → χ) → φ ∨ ψ → χ

9 ⊥ → φ

Remarks

▶ ¬φ is shortcut for φ→ ⊥
▶ adding axiom φ ∨ ¬φ (law of excluded middle) gives (classical) propositional logic

▶ intuitionistic propositional logic is known as IPC in literature
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Theorem

Hilbert system for IPC is sound and complete with respect to Kripke models:

Γ ⊢h φ ⇐⇒ Γ ⊩ φ

Theorem (Finite Model Property)

⊢h φ ⇐⇒ C ⊩ φ for all finite Kripke models C

Theorem

problem

instance: formula φ

question: ⊢h φ ?

is decidable and PSPACE–complete
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Theorem (Glivenko 1929)

⊢ φ ⇐⇒ ⊢h ¬¬φ

Remark

Glivenko’s theorem does not extend to predicate logic

Definition (Gödel’s Negative Translation)

▶ pn = ¬¬p for propositional atoms p

▶ (φ ∧ ψ)n = φn ∧ ψ n

▶ (φ ∨ ψ)n = ¬(¬φn ∧ ¬ψ n)

▶ (φ→ ψ)n = φn → ψ n

▶ ⊥n = ⊥

Theorem

⊢ φ ⇐⇒ ⊢h φn
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Important Concepts

▶ φn

▶ ⊢h

▶ Curry–Howard isomorphism

▶ finite model property

▶ Glivenko’s theorem

▶ Gödel’s negative translation

▶ Hilbert system

▶ intuitionistic propositional logic

homework for January 15
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http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/12.pdf
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