
WS 2023 lecture 13

Computability Theory

Aart Middeldorp

http://cl-informatik.uibk.ac.at/teaching/ws23/ct
http://cl-informatik.uibk.ac.at/~ami

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 2/40

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

φ→ ψ → φ (φ→ ψ → χ)→ (φ→ ψ)→ φ→ χ

φ φ→ ψ

ψ

Deduction Theorem

Γ ∪ {φ} ⊢h ψ ⇐⇒ Γ ⊢h φ→ ψ

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

Γ ⊢h φ ⇐⇒ Γ ⊩ φ

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture 3/40

Theorem (Curry–Howard)

1 if Γ ⊢ t : τ then types(Γ) ⊢h τ

2 if Γ ⊢h φ then ∆ ⊢ t : φ for some t and ∆ with types(∆) = Γ

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

1 φ→ ψ → φ

2 (φ→ ψ → χ)→ (φ→ ψ)→ φ→ χ

3 φ ∨ ψ → φ

4 φ ∨ ψ → ψ

5 φ→ ψ → φ ∧ ψ

6 φ→ φ ∨ ψ

7 ψ → φ ∨ ψ

8 (φ→ χ)→ (ψ → χ)→ φ ∨ ψ → χ

9 ⊥ → φ

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture 4/40

Remarks

▶ ¬φ is shortcut for φ→ ⊥
▶ adding axiom φ ∨ ¬φ (law of excluded middle) gives (classical) propositional logic

Theorem

Hilbert system is sound and complete with respect to Kripke models:

Γ ⊢h φ ⇐⇒ Γ ⊩ φ

Theorem (Finite Model Property)

⊢h φ ⇐⇒ C ⊩ φ for all finite Kripke models C

Theorem (Glivenko 1929)

⊢ φ ⇐⇒ ⊢h ¬¬φ

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture 5/40

Theorem

problem

instance: formula φ

question: ⊢h φ ?

is decidable and PSPACE–complete

Definition (Gödel’s Negative Translation)

▶ pn = ¬¬p for propositional atoms p

▶ (φ ∧ ψ)n = φn ∧ ψ n

▶ (φ ∨ ψ)n = ¬(¬φn ∧ ¬ψ n)

▶ (φ→ ψ)n = φn → ψ n

▶ ⊥n = ⊥

Theorem

⊢ φ ⇐⇒ ⊢h φn

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture 6/40

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture Topics 7/40

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion,
diagonalization, diophantine sets, elementary functions, fixed point theorem,
Fibonacci numbers, Gödel numbering, Gödel’s β function, Grzegorczyk hierarchy,
loop programs, minimization, normal form theorem, partial recursive functions,
primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem,
total recursive functions, undecidability, while programs, . . .

Part II: Combinatory Logic and Lambda Calculus

α–equivalence, abstraction, arithmetization, β –reduction, CL–representability, combinators,
combinatorial completeness, Church numerals, Church–Rosser theorem,
Curry–Howard isomorphism, de Bruijn notation, η–reduction, fixed point theorem,
intuitionistic propositional logic, λ–definability, normalization theorem, termination, typing,
undecidability, Z property, . . .

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture Topics 7/40

Literature (Combinatory Logic and Lambda Calculus)

▶ Henk Barendregt
The Lambda Calculus, Its Syntax and Semantics
North Holland, 1984

▶ Henk Barendregt, Wil Dekkers and Richard Statman
Lambda Calculus with Types
Cambridge University Press, 2013

▶ Herman Geuvers and Rob Nederpelt
Type Theory and Formal Proof
Cambridge University Press, 2014

▶ Chris Hankin
An Introduction to Lambda Calculi for Computer Scientists
King’s College Publications, 2000

▶ J. Roger Hindley and Jonathan P. Seldin
Lambda–Calculus and Combinators, an Introduction
Cambridge University Press, 2008

WS 2023 Computability Theory lecture 13 1. Summary of Previous Lecture Topics 8/40

https://www.sciencedirect.com/bookseries/0049237X/103
https://www.sciencedirect.com/bookseries/0049237X/103
https://www.sciencedirect.com/bookseries/0049237X/103
https://doi.org/https://doi.org/10.1017/CBO9781139032636
https://doi.org/https://doi.org/10.1017/CBO9781139032636
https://doi.org/https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1017/CBO9781139567725
https://doi.org/10.1017/CBO9781139567725
https://doi.org/10.1017/CBO9781139567725
https://doi.org/10.1017/CBO9780511809835
https://doi.org/10.1017/CBO9780511809835

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 2. β – Reduction 9/40

Definition

set of lambda terms (Λ) is built from

▶ infinite set of variables V = {x, y, z, . . .} x ∈ V =⇒ x ∈ Λ

▶ application M, N ∈ Λ =⇒ (MN) ∈ Λ

▶ abstraction x ∈ V, M ∈ Λ =⇒ (λx.M) ∈ Λ

Examples

(λx.x) ((λx.(xx))(λy.(yy))) (λf .(λx.(f (f x))))

Backus–Naur Form

M, N ::= x | (MN) | (λx.M)

WS 2023 Computability Theory lecture 13 2. β – Reduction 10/40

Definition

set of lambda terms (Λ) is built from

▶ infinite set of variables V = {x, y, z, . . .} x ∈ V =⇒ x ∈ Λ

▶ application M, N ∈ Λ =⇒ (MN) ∈ Λ

▶ abstraction x ∈ V, M ∈ Λ =⇒ (λx.M) ∈ Λ

Examples

(λx.x) ((λx.(xx))(λy.(yy))) (λf .(λx.(f (f x))))

Backus–Naur Form

M, N ::= x | (MN) | (λx.M)

WS 2023 Computability Theory lecture 13 2. β – Reduction 10/40

Definition

set of lambda terms (Λ) is built from

▶ infinite set of variables V = {x, y, z, . . .} x ∈ V =⇒ x ∈ Λ

▶ application M, N ∈ Λ =⇒ (MN) ∈ Λ

▶ abstraction x ∈ V, M ∈ Λ =⇒ (λx.M) ∈ Λ

Examples

(λx.x) ((λx.(xx))(λy.(yy))) (λf .(λx.(f (f x))))

Backus–Naur Form

M, N ::= x | (MN) | (λx.M)

WS 2023 Computability Theory lecture 13 2. β – Reduction 10/40

Definition

set of lambda terms (Λ) is built from

▶ infinite set of variables V = {x, y, z, . . .} x ∈ V =⇒ x ∈ Λ

▶ application M, N ∈ Λ =⇒ (MN) ∈ Λ

▶ abstraction x ∈ V, M ∈ Λ =⇒ (λx.M) ∈ Λ

Examples

(λx.x) ((λx.(xx))(λy.(yy))) (λf .(λx.(f (f x))))

Backus–Naur Form

M, N ::= x | (MN) | (λx.M)

WS 2023 Computability Theory lecture 13 2. β – Reduction 10/40

Definition

set of lambda terms (Λ) is built from

▶ infinite set of variables V = {x, y, z, . . .} x ∈ V =⇒ x ∈ Λ

▶ application M, N ∈ Λ =⇒ (MN) ∈ Λ

▶ abstraction x ∈ V, M ∈ Λ =⇒ (λx.M) ∈ Λ

Examples

(λx.x) ((λx.(xx))(λy.(yy))) (λf .(λx.(f (f x))))

Backus–Naur Form

M, N ::= x | (MN) | (λx.M)

WS 2023 Computability Theory lecture 13 2. β – Reduction 10/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Conventions

▶ outermost parentheses are omitted

▶ application is left-associative: MNP stands for (MN)P

▶ body of lambda abstraction extends as far right as possible:

λx.MN abbreviates λx.(MN) and not (λx.M)N

▶ λxyz.M abbreviates λx.λy.λz.M

Terminology

λx.M

▶ λx is binder

▶ M is scope of binder λx

▶ occurrence of x in λx.M is bound

WS 2023 Computability Theory lecture 13 2. β – Reduction 11/40

Notation

M ≡ N if M and N are identical

Definition

▶ set FV(M) of free variables of lambda term M is inductively defined:

FV(x) = {x}

FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}

▶ lambda term M is closed (or combinator) if FV(M) = ∅

Example

M ≡ (λx.xy)(λy.yz)

FV(M) = {y, z}

WS 2023 Computability Theory lecture 13 2. β – Reduction 12/40

Notation

M ≡ N if M and N are identical

Definition

▶ set FV(M) of free variables of lambda term M is inductively defined:

FV(x) = {x}

FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}

▶ lambda term M is closed (or combinator) if FV(M) = ∅

Example

M ≡ (λx.xy)(λy.yz)

FV(M) = {y, z}

WS 2023 Computability Theory lecture 13 2. β – Reduction 12/40

Notation

M ≡ N if M and N are identical

Definition

▶ set FV(M) of free variables of lambda term M is inductively defined:

FV(x) = {x}

FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}

▶ lambda term M is closed (or combinator) if FV(M) = ∅

Example

M ≡ (λx.xy)(λy.yz)

FV(M) = {y, z}

WS 2023 Computability Theory lecture 13 2. β – Reduction 12/40

Notation

M ≡ N if M and N are identical

Definition

▶ set FV(M) of free variables of lambda term M is inductively defined:

FV(x) = {x}

FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}

▶ lambda term M is closed (or combinator) if FV(M) = ∅

Example

M ≡ (λx.xy)(λy.yz)

FV(M) = {y, z}

WS 2023 Computability Theory lecture 13 2. β – Reduction 12/40

Notation

M ≡ N if M and N are identical

Definition

▶ set FV(M) of free variables of lambda term M is inductively defined:

FV(x) = {x}

FV(MN) = FV(M) ∪ FV(N)

FV(λx.M) = FV(M) \ {x}

▶ lambda term M is closed (or combinator) if FV(M) = ∅

Example

M ≡ (λx.xy)(λy.yz) FV(M) = {y, z}

WS 2023 Computability Theory lecture 13 2. β – Reduction 12/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

Definition (Renaming)

x{y/x} ≡ y

z{y/x} ≡ z if x ̸= z

(MN){y/x} ≡ (M{y/x})(N{y/x})

(λx.M){y/x} ≡ λy.(M{y/x})

(λz.M){y/x} ≡ λz.(M{y/x}) if x ̸= z

Definition

α–equivalence is smallest congruence relation ≡α on lambda terms such that

λx.M ≡α λy.(M{y/x})

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13 2. β – Reduction 13/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y

λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y

λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y

λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y

λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y λx.y ̸≡α λy.y

(λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z

(λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

ααα–equivalence

(reflexivity)
M ≡α M

M ≡α M′ N ≡α N′

MN ≡α M′N′ (congruence)

(symmetry)
M ≡α N

N ≡α M

M ≡α M′

λx.M ≡α λx.M′ (ξ)

(transitivity)
M ≡α N N ≡α P

M ≡α P

y /∈ M

λx.M ≡α λy.(M{y/x})
(α)

Examples

λx.y ≡α λz.y λx.y ̸≡α λy.y (λx.y)z ̸≡α (λx.w)z (λx.y)(λz.z) ≡α (λz.y)(λz.z)

WS 2023 Computability Theory lecture 13 2. β – Reduction 14/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Barendregt’s Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

x [N/x] ≡ N

y [N/x] ≡ y if x ̸= y

(MP)[N/x] ≡ (M[N/x])(P[N/x])

(λx.M)[N/x] ≡ λx.M

(λy.M)[N/x] ≡ λy.(M[N/x]) if x ̸= y and y /∈ FV(N)

(λy.M)[N/x] ≡ λz.(M{z/y}[N/x]) if x ̸= y, y ∈ FV(N) and z is fresh

Convention

lambda terms are identified up to α–equivalence

WS 2023 Computability Theory lecture 13 2. β – Reduction 15/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w)) β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w)) reduct

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w)) β-redex

→β (λx.y)(λw.w)

→β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

one-step β –reduction is smallest relation →β on lambda terms satisfying

(β)
(λx.M)N →β M[N/x]

M →β M′

MN →β M′N
(congruence)

(ξ)
M →β M′

λx.M →β λx.M′
N →β N′

MN →β MN′ (congruence)

Example

(λx.y)((λz.zz)(λw.w)) →β (λx.y)((λw.w)(λw.w))

β-redex

→β (λx.y)(λw.w) →β y

Definitions

▶ β –normal form is lambda term without β –redexes

▶ β –conversion (=β) is transitive symmetric reflexive closure of →β

WS 2023 Computability Theory lecture 13 2. β – Reduction 16/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF

→β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF

→β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF

→β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF

→β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF →β (λy.y(AAy))F

→β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF →β (λy.y(AAy))F →β F(AAF)

≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF →β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF)

≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Definition

lambda term N is fixed point of lambda term F if FN =β N

Definition (Turing’s Fixed Point Combinator)

Θ ≡ AA with A = λxy.y(xxy)

Theorem

every lambda term has fixed point

Proof

N ≡ ΘF is fixed point of F :

N ≡ (λxy.y(xxy))AF →β (λy.y(AAy))F →β F(AAF) ≡ F(ΘF) ≡ FN

WS 2023 Computability Theory lecture 13 2. β – Reduction 17/40

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 18/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

Church–Rosser Theorem

M

N P

β β

Q

β β

CR

Corollary

▶ M =β N =⇒ ∃ Q such that M →∗
β Q and N →∗

β Q

▶ M =β N and N is β –normal form =⇒ M →∗
β N

▶ M =β N and M, N are β –normal forms =⇒ M ≡α N

▶ M =β N =⇒ both or neither of M, N have β –normal form

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 19/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a)

(b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c)

:

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b)

(c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c)

:

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b)

(c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c)

:

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c)

:

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c)

:

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c):

(λx.xx)z β←

(λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c): (λx.xx)z β← (λx.xx)((λy.y)z)

→β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

M

N P

Q

CR

M

N P

Q

WCR

M

N P

Q

diamond

property

(a) (b) (c)

▶ β –reduction satisfies (b)

▶ (b) ≠⇒ (a)

▶ (c) =⇒ (a)

▶ β –reduction does not satisfy (c): (λx.xx)z β← (λx.xx)((λy.y)z) →β (λy.y)z((λy.y)z)

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 20/40

Definition (Parallel Reduction)

M ∥−→β M

(λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′

M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property

: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Definition (Parallel Reduction)

M ∥−→β M (λx.M)N ∥−→β M[N/x]

M ∥−→β M′

λx.M ∥−→β λx.M′
M ∥−→β M′ N ∥−→β N′

MN ∥−→β M′N′

Problem

∥−→ lacks diamond property: (λx.x) I β ∥←− (λx.(λy.x) I)(I I) ∥−→β (λy. I I) I with I = λx.x

Definition (Parallel Reduction Revisited)

M ◦−→β M

M ◦−→β M′ N ◦−→β N′

(λx.M)N ◦−→β M′ [N′/x]

M ◦−→β M′

λx.M ◦−→β λx.M′
M ◦−→β M′ N ◦−→β N′

MN ◦−→β M′N′

Lemma

→β ⊆ ◦−→β ⊆ →∗
β

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 21/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Substitution)

if M ◦−→β M′ and U ◦−→β U′ then M[U/y] ◦−→β M′ [U′/y]

Definition

M∗ is maximal parallel one-step reduct of M:

1 x∗ = x

2 (PN)∗ = P∗N∗ if PN is no β –redex

3 ((λx.Q)N)∗ = Q∗ [N∗/x]

4 (λx.N)∗ = λx.N∗

Lemma

if M ◦−→β N then N ◦−→β M∗

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 22/40

Lemma (Diamond Property of Parallel Reduction)

∀ M, N, P ∈ Λ such that M ◦−→β N and M ◦−→β P

∃ Q ∈ Λ such that N ◦−→β Q and P ◦−→β Q

Proof

take Q ≡ M∗

Corollary

β –reduction has Church–Rosser property

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 23/40

Lemma (Diamond Property of Parallel Reduction)

∀ M, N, P ∈ Λ such that M ◦−→β N and M ◦−→β P

∃ Q ∈ Λ such that N ◦−→β Q and P ◦−→β Q

Proof

take Q ≡ M∗

Corollary

β –reduction has Church–Rosser property

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 23/40

Lemma (Diamond Property of Parallel Reduction)

∀ M, N, P ∈ Λ such that M ◦−→β N and M ◦−→β P

∃ Q ∈ Λ such that N ◦−→β Q and P ◦−→β Q

Proof

take Q ≡ M∗

Corollary

β –reduction has Church–Rosser property

WS 2023 Computability Theory lecture 13 3. Church – Rosser Theorem 23/40

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 4. λ – Definability 24/40

Definitions

▶ T ≡ λxy.x

F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y

and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Definitions

▶ T ≡ λxy.x F ≡ λxy.y and ≡ λab.ab F

▶ ite ≡ λx.x

Lemmata

▶ and T T →∗
β T and T F →∗

β F and F T →∗
β F and F F →∗

β F

▶ ite TMN →∗
β M ite FMN →∗

β N

Definitions (Church Numerals)

▶ for every natural number n

n ≡ λf x.f nx where FnM ≡

{
M if n = 0

F(Fn−1M) if n > 0

▶ succ ≡ λn f x.f (n f x)

WS 2023 Computability Theory lecture 13 4. λ – Definability 25/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx)

→β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx)

→β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x)

→β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx)

≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T

add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0

add n m →∗
β n+m mul n m →∗

β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T add ≡ λnmf x.nf (mf x)

mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0

add n m →∗
β n+m mul n m →∗

β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0

add n m →∗
β n+m mul n m →∗

β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Lemma

succ n →∗
β n+ 1

Proof

succ n ≡ (λnf x.f (n f x))(λf x.f nx) →β λf x.f ((λf x.f nx) f x) →β λf x.f ((λx.f nx) x)

→β λf x.f (f nx) ≡ λf x.f n+1x ≡ n+ 1

Definitions

▶ zero? ≡ λn.n(λx.F) T add ≡ λnmf x.nf (mf x) mul ≡ λnmf .n(mf)

Lemmata

▶ zero? n →∗
β

{
T if n = 0

F if n > 0
add n m →∗

β n+m mul n m →∗
β n ·m

WS 2023 Computability Theory lecture 13 4. λ – Definability 26/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z)

→∗
β (λz.0)(λz.z) →β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z)

→∗
β (λz.0)(λz.z) →β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z)

→∗
β (λz.0)(λz.z) →β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z) →∗
β (λz.0)(λz.z)

→β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z) →∗
β (λz.0)(λz.z) →β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Definition

pred ≡ λn.n(λuv.v(u succ))(λz.0)(λz.z)

Lemma

pred n →∗
β

{
0 if n = 0

n− 1 if n > 0

Proof

▶ pred 0 →β 0(λuv.v(u succ))(λz.0)(λz.z) →∗
β (λz.0)(λz.z) →β 0

▶ pred n+ 1 →∗
β n (homework exercise)

WS 2023 Computability Theory lecture 13 4. λ – Definability 27/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0))

→∗
β mul 2 (mul 1 1) →∗

β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1)

→∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Example

representing factorial function in lambda calculus

fac n = ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = λn. ite (zero?n) 1 (mul n (fac (pred n)))

▶ fac = (λf n. ite (zero?n) 1 (mul n (f (pred n)))) fac

▶ fac = Θ F with F ≡ (λf n. ite (zero?n) 1 (mul n (f (pred n))))

fac 2 →∗
β F fac 2

→∗
β ite (zero?2) 1 (mul 2 (fac (pred 2)))

→∗
β ite F 1 (mul 2 (fac (pred 2)))

→∗
β mul 2 (fac (pred 2))

→∗
β mul 2 (fac 1)

→∗
β · · ·

→∗
β mul 2 (mul 1 (fac 0)) →∗

β mul 2 (mul 1 1) →∗
β 2

WS 2023 Computability Theory lecture 13 4. λ – Definability 28/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0

zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0

zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0

zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0 zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0 zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0 zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi

πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Definition

partial function f : Nn → N is λ–definable if ∃ combinator F such that

f(x1, . . . , xn) = y =⇒ F x1 · · · xn →∗
β y

f(x1, . . . , xn) is undefined =⇒ F x1 · · · xn is not normalizing

for all x1, . . . , xn, y ∈ N

Theorem

partial recursive functions are λ–definable

Proof

▶ zero function z(x) = 0 zero ≡ λx.0

▶ successor function s(x) = x+ 1 succ ≡ λnf x.f (nf x)

▶ projection functions πni (x1, . . . , xn) = xi πni ≡ λx1 · · · xn.xi

WS 2023 Computability Theory lecture 13 4. λ – Definability 29/40

Proof (cont’d)

▶ composition f(x⃗) = g(h1(x⃗), . . . ,hm(x⃗))

F ≡ λ x⃗.G (H1 x⃗) · · · (Hm x⃗)

▶ primitive recusion f(0, y⃗) = g(y⃗)

f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

F = λx y⃗. ite (zero? x) (G y⃗) (H (F (pred x) y⃗) (pred x) y⃗)

= Θ (λf x y⃗. ite (zero? x) (G y⃗) (H (f (pred x) y⃗) (pred x) y⃗))

WS 2023 Computability Theory lecture 13 4. λ – Definability 30/40

Proof (cont’d)

▶ composition f(x⃗) = g(h1(x⃗), . . . ,hm(x⃗))

F ≡ λ x⃗.G (H1 x⃗) · · · (Hm x⃗)

▶ primitive recusion f(0, y⃗) = g(y⃗)

f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

F = λx y⃗. ite (zero? x) (G y⃗) (H (F (pred x) y⃗) (pred x) y⃗)

= Θ (λf x y⃗. ite (zero? x) (G y⃗) (H (f (pred x) y⃗) (pred x) y⃗))

WS 2023 Computability Theory lecture 13 4. λ – Definability 30/40

Proof (cont’d)

▶ composition f(x⃗) = g(h1(x⃗), . . . ,hm(x⃗))

F ≡ λ x⃗.G (H1 x⃗) · · · (Hm x⃗)

▶ primitive recusion f(0, y⃗) = g(y⃗)

f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

F = λx y⃗. ite (zero? x) (G y⃗) (H (F (pred x) y⃗) (pred x) y⃗)

= Θ (λf x y⃗. ite (zero? x) (G y⃗) (H (f (pred x) y⃗) (pred x) y⃗))

WS 2023 Computability Theory lecture 13 4. λ – Definability 30/40

Proof (cont’d)

▶ composition f(x⃗) = g(h1(x⃗), . . . ,hm(x⃗))

F ≡ λ x⃗.G (H1 x⃗) · · · (Hm x⃗)

▶ primitive recusion f(0, y⃗) = g(y⃗)

f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

F = λx y⃗. ite (zero? x) (G y⃗) (H (F (pred x) y⃗) (pred x) y⃗)

= Θ (λf x y⃗. ite (zero? x) (G y⃗) (H (f (pred x) y⃗) (pred x) y⃗))

WS 2023 Computability Theory lecture 13 4. λ – Definability 30/40

Proof (cont’d)

▶ composition f(x⃗) = g(h1(x⃗), . . . ,hm(x⃗))

F ≡ λ x⃗.G (H1 x⃗) · · · (Hm x⃗)

▶ primitive recusion f(0, y⃗) = g(y⃗)

f(x+ 1, y⃗) = h(f(x, y⃗), x, y⃗)

F = λx y⃗. ite (zero? x) (G y⃗) (H (F (pred x) y⃗) (pred x) y⃗)

= Θ (λf x y⃗. ite (zero? x) (G y⃗) (H (f (pred x) y⃗) (pred x) y⃗))

WS 2023 Computability Theory lecture 13 4. λ – Definability 30/40

Proof (cont’d)

▶ minimization f(x⃗) = (µ i) (g(i, x1, . . . , xn) = 0)

F ≡ H0

with

H = λ i x⃗. ite (zero? (G i x⃗)) i (H (succ i) x⃗)

= Θ (λh i x⃗. ite (zero? (G i x⃗)) i (h (succ i) x⃗))

Theorem

λ–definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19 – 21 of lecture 9

WS 2023 Computability Theory lecture 13 4. λ – Definability 31/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/08x1.pdf#page=28
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/09x1.pdf#page=19

Proof (cont’d)

▶ minimization f(x⃗) = (µ i) (g(i, x1, . . . , xn) = 0)

F ≡ H0

with

H = λ i x⃗. ite (zero? (G i x⃗)) i (H (succ i) x⃗)

= Θ (λh i x⃗. ite (zero? (G i x⃗)) i (h (succ i) x⃗))

Theorem

λ–definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19 – 21 of lecture 9

WS 2023 Computability Theory lecture 13 4. λ – Definability 31/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/08x1.pdf#page=28
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/09x1.pdf#page=19

Proof (cont’d)

▶ minimization f(x⃗) = (µ i) (g(i, x1, . . . , xn) = 0)

F ≡ H0

with

H = λ i x⃗. ite (zero? (G i x⃗)) i (H (succ i) x⃗)

= Θ (λh i x⃗. ite (zero? (G i x⃗)) i (h (succ i) x⃗))

Theorem

λ–definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19 – 21 of lecture 9

WS 2023 Computability Theory lecture 13 4. λ – Definability 31/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/08x1.pdf#page=28
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/09x1.pdf#page=19

Proof (cont’d)

▶ minimization f(x⃗) = (µ i) (g(i, x1, . . . , xn) = 0)

F ≡ H0

with

H = λ i x⃗. ite (zero? (G i x⃗)) i (H (succ i) x⃗)

= Θ (λh i x⃗. ite (zero? (G i x⃗)) i (h (succ i) x⃗))

Theorem

λ–definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19 – 21 of lecture 9

WS 2023 Computability Theory lecture 13 4. λ – Definability 31/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/08x1.pdf#page=28
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/09x1.pdf#page=19

Proof (cont’d)

▶ minimization f(x⃗) = (µ i) (g(i, x1, . . . , xn) = 0)

F ≡ H0

with

H = λ i x⃗. ite (zero? (G i x⃗)) i (H (succ i) x⃗)

= Θ (λh i x⃗. ite (zero? (G i x⃗)) i (h (succ i) x⃗))

Theorem

λ–definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19 – 21 of lecture 9

WS 2023 Computability Theory lecture 13 4. λ – Definability 31/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/08x1.pdf#page=28
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/slides/09x1.pdf#page=19

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 5. η – Reduction 32/40

Theorem

β –reduction has Church–Rosser property

Corollary

x ̸=β λy.xy

Corollary

λ–calculus is consistent

Remark

x and λy.xy are extensionally equivalent: xM =β (λy.xy)M for all M ∈ Λ

WS 2023 Computability Theory lecture 13 5. η – Reduction 33/40

Theorem

β –reduction has Church–Rosser property

Corollary

x ̸=β λy.xy

Corollary

λ–calculus is consistent

Remark

x and λy.xy are extensionally equivalent: xM =β (λy.xy)M for all M ∈ Λ

WS 2023 Computability Theory lecture 13 5. η – Reduction 33/40

Theorem

β –reduction has Church–Rosser property

Corollary

x ̸=β λy.xy

Corollary

λ–calculus is consistent

Remark

x and λy.xy are extensionally equivalent: xM =β (λy.xy)M for all M ∈ Λ

WS 2023 Computability Theory lecture 13 5. η – Reduction 33/40

Theorem

β –reduction has Church–Rosser property

Corollary

x ̸=β λy.xy

Corollary

λ–calculus is consistent

Remark

x and λy.xy are extensionally equivalent: xM =β (λy.xy)M for all M ∈ Λ

WS 2023 Computability Theory lecture 13 5. η – Reduction 33/40

Definition

one-step η–reduction is smallest relation →η on lambda terms satisfying

(η)
x /∈ FV(M)

λx.Mx →η M

M →η M′

MN →η M′N
(congruence)

(ξ)
M →η M′

λx.M →η λx.M′
N →η N′

MN →η MN′ (congruence)

Definition

one-step βη–reduction →βη is union of →β and →η

Theorem

βη–reduction has Church-Rosser property

WS 2023 Computability Theory lecture 13 5. η – Reduction 34/40

Definition

one-step η–reduction is smallest relation →η on lambda terms satisfying

(η)
x /∈ FV(M)

λx.Mx →η M

M →η M′

MN →η M′N
(congruence)

(ξ)
M →η M′

λx.M →η λx.M′
N →η N′

MN →η MN′ (congruence)

Definition

one-step βη–reduction →βη is union of →β and →η

Theorem

βη–reduction has Church-Rosser property

WS 2023 Computability Theory lecture 13 5. η – Reduction 34/40

Definition

one-step η–reduction is smallest relation →η on lambda terms satisfying

(η)
x /∈ FV(M)

λx.Mx →η M

M →η M′

MN →η M′N
(congruence)

(ξ)
M →η M′

λx.M →η λx.M′
N →η N′

MN →η MN′ (congruence)

Definition

one-step βη–reduction →βη is union of →β and →η

Theorem

βη–reduction has Church-Rosser property

WS 2023 Computability Theory lecture 13 5. η – Reduction 34/40

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 35/40

Example

▶ Ω ≡ (λx.xx)(λx.xx)

→β Ω

▶ (λx.y) Ω has β –normal form

: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form

: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form

: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction

: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction

: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Example

▶ Ω ≡ (λx.xx)(λx.xx) →β Ω

▶ (λx.y) Ω has β –normal form: (λx.y) Ω →β y

▶ (λx.y) Ω admits infinite reduction: (λx.y) Ω →β (λx.y) Ω →β · · ·

Question

how to compute β –normal forms (or βη–normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

WS 2023 Computability Theory lecture 13 6. Normalization Theorem 36/40

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 7. Test Practice 37/40

Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

▶ score = min (max (2
3 (E+ P) + 1

3 T + B, T + B),100)

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004

test practice on January 22

WS 2023 Computability Theory lecture 13 7. Test Practice 38/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss12-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf

Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

▶ score = min (max (2
3 (E+ P) + 1

3 T + B, T + B),100)

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004

test practice on January 22

WS 2023 Computability Theory lecture 13 7. Test Practice 38/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss12-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf

Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

▶ score = min (max (2
3 (E+ P) + 1

3 T + B, T + B),100)

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004

test practice on January 22

WS 2023 Computability Theory lecture 13 7. Test Practice 38/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss12-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf

Test on January 29

▶ 15:15 – 18:00 in HS 10

▶ online registration required before 10 am on January 23

▶ closed book

▶ score = min (max (2
3 (E+ P) + 1

3 T + B, T + B),100)

Earlier Exams /Tests

▶ SS 2022 (test)

▶ WS 2017 – 2

▶ WS 2017 – 1

▶ WS 2014 – 2

▶ WS 2014 – 1

▶ SS 2012

▶ SS 2008 – 2

▶ SS 2008 – 1

▶ SS 2007

▶ SS 2006 – 2

▶ SS 2006 – 1

▶ WS 2004

test practice on January 22

WS 2023 Computability Theory lecture 13 7. Test Practice 38/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss22.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws17-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws14-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss12-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss08-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss07-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-2.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ss06-1.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exams/ws04-1.pdf

Outline
1. Summary of Previous Lecture

2. β –Reduction

3. Church–Rosser Theorem

4. λ–Definability

5. η–Reduction

6. Normalization Theorem

7. Test Practice

8. Summary

WS 2023 Computability Theory lecture 13 8. Summary 39/40

Important Concepts

▶ α–conversion

▶ β –conversion

▶ β –reduction

▶ Church–Rosser theorem

▶ η–reduction

▶ lambda calculus

▶ λ–definability

▶ normalization theorem

homework for January 22

WS 2023 Computability Theory lecture 13 8. Summary 40/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/13.pdf

Important Concepts

▶ α–conversion

▶ β –conversion

▶ β –reduction

▶ Church–Rosser theorem

▶ η–reduction

▶ lambda calculus

▶ λ–definability

▶ normalization theorem

homework for January 22

WS 2023 Computability Theory lecture 13 8. Summary 40/40

http://cl-informatik.uibk.ac.at/teaching/ws23/ct/exercises/13.pdf

	lecture 13
	Summary of Previous Lecture
	Topics

	Beta Reduction
	Church–Rosser Theorem
	Lambda Definability
	Eta Reduction
	Normalization Theorem
	Test Practice
	Summary

