

WS 2023 lecture 13

Computability Theory

Aart Middeldorp

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

 $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$

$$\frac{\varphi \qquad \varphi \to \psi}{\psi}$$

Deduction Theorem

 $\varphi \to \psi \to \varphi$

$$\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi \quad \Longleftrightarrow \quad \Gamma \vdash_{\mathsf{h}} \varphi \to \psi$$

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Curry-Howard)

- **1** if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_{h} \tau$
- **2** if $\Gamma \vdash_{h} \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

- $\begin{array}{cccc} (\circ & \varphi \rightarrow \psi \rightarrow \varphi & (\circ & \varphi \rightarrow \varphi \lor \psi \\ \hline (\circ & \varphi \rightarrow \psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \chi & (\circ & \varphi \lor \psi \\ \hline (\circ & \varphi \lor \psi \rightarrow \varphi & (\circ & \varphi \lor \psi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \varphi & (\circ & \varphi \lor \psi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi & (\circ & \varphi \lor \psi \rightarrow \chi) \\ \hline (\circ & \varphi \lor \psi \rightarrow \psi)$
- (5) $\varphi \to \psi \to \varphi \land \psi$

Remarks

- $\neg \varphi$ is shortcut for $\varphi \rightarrow \bot$
- ► adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic

Theorem

Hilbert system is sound and complete with respect to Kripke models:

 $\Gamma \vdash_{\mathsf{h}} \varphi \quad \Longleftrightarrow \quad \Gamma \Vdash \varphi$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \quad \Longleftrightarrow \quad \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Theorem (Glivenko 1929)

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

Theorem

problem

- instance: formula φ
- question: $\vdash_{h} \varphi$?
- is decidable and PSPACE-complete

Definition (Gödel's Negative Translation)

- $p^{n} = \neg \neg p$ for propositional atoms p
- $(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$
- $(\varphi \lor \psi)^{\mathsf{n}} = \neg (\neg \varphi^{\mathsf{n}} \land \neg \psi^{\mathsf{n}})$

 $(\varphi \to \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \to \psi^{\mathsf{n}}$ $| {}^{\mathsf{n}} = |$

Theorem

 $\vdash \varphi \iff \vdash_{\mathsf{h}} \varphi^{\mathsf{n}}$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course–of–values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s–m–n theorem, total recursive functions, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Literature (Combinatory Logic and Lambda Calculus)

- Henk Barendregt The Lambda Calculus, Its Syntax and Semantics North Holland, 1984
- Henk Barendregt, Wil Dekkers and Richard Statman Lambda Calculus with Types
 Cambridge University Press, 2013
- Herman Geuvers and Rob Nederpelt Type Theory and Formal Proof Cambridge University Press, 2014
- Chris Hankin

An Introduction to Lambda Calculi for Computer Scientists King's College Publications, 2000

 J. Roger Hindley and Jonathan P. Seldin Lambda–Calculus and Combinators, an Introduction Cambridge University Press, 2008

1. Summary of Previous Lecture

2. β -Reduction

- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice

Definition

set of lambda terms (Λ) is built from

- ► infinite set of variables $\mathcal{V} = \{x, y, z, ...\}$ $x \in \mathcal{V} \implies x \in \Lambda$
- ► application $M, N \in \Lambda \implies (MN) \in \Lambda$
- abstraction

$$x \in \mathcal{V}, M \in \Lambda \implies (\lambda x.M) \in \Lambda$$

Examples

$$(\lambda x.x) \qquad ((\lambda x.(xx))(\lambda y.(yy))) \qquad (\lambda f.(\lambda x.(f(fx))))$$

Backus-Naur Form

$M, N ::= x \mid (MN) \mid (\lambda x.M)$

Conventions

- outermost parentheses are omitted
- application is left-associative: MNP stands for (MN)P
- ▶ body of lambda abstraction extends as far right as possible: $\lambda x.MN$ abbreviates $\lambda x.(MN)$ and not $(\lambda x.M)N$
- $\lambda x y z.M$ abbreviates $\lambda x.\lambda y.\lambda z.M$

Terminology

$\lambda x.M$

- λx is binder
- *M* is scope of binder λx
- occurrence of x in $\lambda x.M$ is bound

Notation

 $M \equiv N$ if M and N are identical

Definition

• set FV(M) of free variables of lambda term M is inductively defined:

$$FV(x) = \{x\}$$
$$FV(MN) = FV(M) \cup FV(N)$$
$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

▶ lambda term *M* is closed (or combinator) if $FV(M) = \emptyset$

Example

$$M \equiv (\lambda x. x \mathbf{y}) (\lambda y. y \mathbf{z})$$

 $FV(M) = \{y, z\}$

Definition (Renaming)

$$x\{y/x\} \equiv y$$

$$z\{y/x\} \equiv z$$

$$(MN)\{y/x\} \equiv (M\{y/x\})(N\{y/x\})$$

$$(\lambda x.M)\{y/x\} \equiv \lambda y.(M\{y/x\})$$

$$(\lambda z.M)\{y/x\} \equiv \lambda z.(M\{y/x\})$$
if $x \neq z$

Definition

 α -equivalence is smallest congruence relation \equiv_{α} on lambda terms such that

 $\lambda x.M \equiv_{\alpha} \lambda y.(M\{y/x\})$

for all terms M and variables y that do not occur in M

universität WS 2023 Computability Theory lecture 13 2. β - Reduction

α –equivalence

(reflexivity)	$\overline{M\equiv_{\alpha}M}$	$\frac{M \equiv_{\alpha} M' N \equiv_{\alpha} N'}{MN \equiv_{\alpha} M'N'}$	(congruence)
(symmetry)	$\frac{M \equiv_{\alpha} N}{N \equiv_{\alpha} M}$	$\frac{M \equiv_{\alpha} M'}{\lambda x.M \equiv_{\alpha} \lambda x.M'}$	(ξ)
(transitivity)	$\frac{M \equiv_{\alpha} N N \equiv_{\alpha} P}{M \equiv_{\alpha} P}$	$\frac{y \notin M}{\lambda x.M \equiv_{\alpha} \lambda y.(M\{y/x\})}$	(α)

Examples

$\lambda x.y \equiv_{\alpha} \lambda z.y \quad \lambda x.y \neq_{\alpha} \lambda y.y \quad (\lambda x.y)z \neq_{\alpha} (\lambda x.w)z \quad (\lambda x.y)(\lambda z.z) \equiv_{\alpha} (\lambda z.y)(\lambda z.z)$

Barendregt's Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

$$\begin{split} x[N/x] &\equiv N \\ y[N/x] &\equiv y & \text{if } x \neq y \\ (MP)[N/x] &\equiv (M[N/x])(P[N/x]) \\ (\lambda x.M)[N/x] &\equiv \lambda x.M \\ (\lambda y.M)[N/x] &\equiv \lambda y.(M[N/x]) & \text{if } x \neq y \text{ and } y \notin FV(N) \\ (\lambda y.M)[N/x] &\equiv \lambda z.(M\{z/y\}[N/x]) & \text{if } x \neq y, y \in FV(N) \text{ and } z \text{ is fresh} \end{split}$$

Convention

lambda terms are identified up to α -equivalence

Definition

one-step β -reduction is smallest relation \rightarrow_{β} on lambda terms satisfying

$$\begin{array}{ll} (\beta) & \frac{M \to_{\beta} M'}{(\lambda x.M)N \to_{\beta} M[N/x]} & \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N} & (\text{congruence}) \\ (\xi) & \frac{M \to_{\beta} M'}{\lambda x.M \to_{\beta} \lambda x.M'} & \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'} & (\text{congruence}) \end{array}$$

Example

$$(\lambda x.y)((\lambda z.zz)(\lambda w.w)) \rightarrow_{eta} (\lambda x.y)((\lambda w.w)(\lambda w.w)) \ \rightarrow_{eta} (\lambda x.y)(\lambda w.w) \rightarrow_{eta} y$$

Definitions

- β -normal form is lambda term without β -redexes
- β -conversion (= $_{\beta}$) is transitive symmetric reflexive closure of \rightarrow_{β}

reduct

Definition

lambda term N is fixed point of lambda term F if $FN =_{\beta} N$

Definition (Turing's Fixed Point Combinator)

 $\Theta \equiv AA$ with $A = \lambda xy.y(xxy)$

Theorem

every lambda term has fixed point

Proof

 $N \equiv \Theta F$ is fixed point of F:

$$N \equiv (\lambda x y. y(x x y)) AF \rightarrow_{\beta} (\lambda y. y(AAy)) F \rightarrow_{\beta} F(AAF) \equiv F(\Theta F) \equiv FN$$

- **1. Summary of Previous Lecture**
- **2.** β -Reduction

3. Church-Rosser Theorem

- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice

Church-Rosser Theorem

Corollary

- $\blacktriangleright M =_{\beta} N \implies \exists Q \text{ such that } M \rightarrow^*_{\beta} Q \text{ and } N \rightarrow^*_{\beta} Q$
- $M =_{\beta} N$ and N is β -normal form $\implies M \rightarrow_{\beta}^{*} N$
- ▶ $M =_{\beta} N$ and M, N are β -normal forms $\implies M \equiv_{\alpha} N$
- ▶ $M =_{\beta} N \implies$ both or neither of M, N have β -normal form

- β -reduction satisfies (b)
- ▶ (b) ⇒⇒ (a)
- ▶ (c) ⇒ (a)

► β -reduction does not satisfy (c): $(\lambda x.xx)z_{\beta} \leftarrow (\lambda x.xx)((\lambda y.y)z) \rightarrow_{\beta} (\lambda y.y)z((\lambda y.y)z)$

Definition (Parallel Reduction)

$$\frac{M \twoheadrightarrow_{\beta} M}{(\lambda x.M)N \twoheadrightarrow_{\beta} M[N/x]} = \frac{M \twoheadrightarrow_{\beta} M'}{\lambda x.M \twoheadrightarrow_{\beta} \lambda x.M'} = \frac{M \twoheadrightarrow_{\beta} M' N \twoheadrightarrow_{\beta} N'}{MN \twoheadrightarrow_{\beta} M'N'}$$

Problem

 \twoheadrightarrow lacks diamond property: $(\lambda x.x)I_{\beta} \leftrightarrow (\lambda x.(\lambda y.x)I)(II) \twoheadrightarrow_{\beta} (\lambda y.II)I$ with $I = \lambda x.x$

Definition (Parallel Reduction Revisited)

$$\frac{M \twoheadrightarrow_{\beta} M' \qquad N \twoheadrightarrow_{\beta} N'}{(\lambda x.M)N \twoheadrightarrow_{\beta} M'[N'/x]} \qquad \frac{M \twoheadrightarrow_{\beta} M'}{\lambda x.M \twoheadrightarrow_{\beta} \lambda x.M'} \qquad \frac{M \twoheadrightarrow_{\beta} M' \qquad N \twoheadrightarrow_{\beta} N'}{MN \twoheadrightarrow_{\beta} M'N'}$$

Lemma

 $\rightarrow_{\beta} \subseteq \twoheadrightarrow_{\beta} \subseteq \rightarrow^*_{\beta}$

Lemma (Substitution)

$\text{if } M \twoheadrightarrow_{\beta} M' \text{ and } U \twoheadrightarrow_{\beta} U' \text{ then } M[U/y] \twoheadrightarrow_{\beta} M'[U'/y]$

Definition

- M^* is maximal parallel one-step reduct of M:
- (1) $x^* = x$
- (PN)^{*} = P^*N^* if PN is no β -redex
- 3 $((\lambda x.Q)N)^* = Q^*[N^*/x]$
- $(\lambda x.N)^* = \lambda x.N^*$

Lemma

if $M \twoheadrightarrow_{\beta} N$ then $N \twoheadrightarrow_{\beta} M^*$

Lemma (Diamond Property of Parallel Reduction)

 $\forall M, N, P \in \Lambda$ such that $M \twoheadrightarrow_{\beta} N$ and $M \twoheadrightarrow_{\beta} P$

 $\exists \ Q \in \Lambda \text{ such that } N \twoheadrightarrow_{\beta} Q \text{ and } P \twoheadrightarrow_{\beta} Q$

Proof

take $Q \equiv M^*$

Corollary

 β -reduction has Church-Rosser property

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem

4. λ -Definability

- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice

Definitions

- $T \equiv \lambda x y. x$ $F \equiv \lambda x y. y$ and $\equiv \lambda a b. a b F$
- ite $\equiv \lambda x.x$

Lemmata

- ▶ and TT \rightarrow^*_{β} T and TF \rightarrow^*_{β} F and FT \rightarrow^*_{β} F and FF \rightarrow^*_{β} F
- ► ite T $MN \rightarrow^*_{\beta} M$ ite F $MN \rightarrow^*_{\beta} N$

Definitions (Church Numerals)

▶ for every natural number *n*

$$\underline{n} \equiv \lambda f x. f^n x$$
 where $F^n M \equiv \begin{cases} M & \text{if } n = 0 \\ F(F^{n-1}M) & \text{if } n > 0 \end{cases}$

• succ $\equiv \lambda n f x. f(n f x)$

Lemma

 $\operatorname{succ} \underline{n} \to^*_{\beta} \underline{n+1}$

Proof

succ
$$\underline{n} \equiv (\lambda nfx.f(nfx))(\lambda fx.f^nx) \rightarrow_{\beta} \lambda fx.f((\lambda fx.f^nx)fx) \rightarrow_{\beta} \lambda fx.f((\lambda x.f^nx)x)$$

 $\rightarrow_{\beta} \lambda fx.f(f^nx) \equiv \lambda fx.f^{n+1}x \equiv \underline{n+1}$

Definitions

► zero? $\equiv \lambda n.n(\lambda x.F)T$ add $\equiv \lambda nmfx.nf(mfx)$ mul $\equiv \lambda nmf.n(mf)$

Definition

pred $\equiv \lambda n.n(\lambda uv.v(u \text{ succ}))(\lambda z.\underline{0})(\lambda z.z)$

Lemma

pred
$$\underline{n} \rightarrow^*_{\beta} \begin{cases} \underline{0} & \text{if } n = 0\\ \underline{n-1} & \text{if } n > 0 \end{cases}$$

Proof

- ► pred $\underline{0} \rightarrow_{\beta} \underline{0}(\lambda uv.v(u \operatorname{succ}))(\lambda z.\underline{0})(\lambda z.z) \rightarrow^{*}_{\beta} (\lambda z.\underline{0})(\lambda z.z) \rightarrow_{\beta} \underline{0}$
- pred $\underline{n+1} \rightarrow^*_{\beta} \underline{n}$ (homework exercise)

Example

representing factorial function in lambda calculus

 $fac n = ite(zero?n) \underline{1} (mul n (fac (pred n)))$

- fac = λn . ite (zero? n) $\underline{1}$ (mul n (fac (pred n)))
- ► fac = $(\lambda f n. \text{ ite } (\text{zero}? n) \mathbf{1} (\text{mul } n (f (\text{pred } n))))$ fac
- ► fac = ΘF with $F \equiv (\lambda f n. \text{ ite}(\text{zero}? n) \underline{1}(\text{mul } n(f(\text{pred } n))))$

fac $\underline{2} \rightarrow^*_{\beta} F$ fac $\underline{2}$ \rightarrow^*_{β} ite (zero? $\underline{2}$) $\underline{1}$ (mul $\underline{2}$ (fac (pred $\underline{2}$))) \rightarrow^*_{β} ite F $\underline{1}$ (mul $\underline{2}$ (fac (pred $\underline{2}$))) \rightarrow^*_{β} mul $\underline{2}$ (fac (pred $\underline{2}$)) \rightarrow^*_{β} mul $\underline{2}$ (fac $\underline{1}$) \rightarrow^*_{β} mul $\underline{2}$ (fac $\underline{1}$) \rightarrow^*_{β} mul $\underline{2}$ (mul $\underline{1}$ (fac 0)) \rightarrow^*_{β} mul $\underline{2}$ (mul $\underline{1}$ 1) \rightarrow^*_{β} $\underline{2}$

Definition

partial function $f: \mathbb{N}^n \to \mathbb{N}$ is λ -definable if \exists combinator F such that

$$f(x_1, \dots, x_n) = y \implies F \underline{x_1} \cdots \underline{x_n} \to_{\beta}^* \underline{y}$$

$$f(x_1, \dots, x_n) \text{ is undefined} \implies F x_1 \cdots x_n \text{ is not normalizing}$$

for all $x_1, \ldots, x_n, y \in \mathbb{N}$

Theorem

partial recursive functions are λ -definable

Proof

- ► zero function z(x) = 0 $zero \equiv \lambda x. \underline{0}$
- successor function s(x) = x + 1 $succ \equiv \lambda nfx.f(nfx)$
- ► projection functions $\pi_i^n(x_1,...,x_n) = x_i$ $\pi_i^n \equiv \lambda x_1 \cdots x_n \cdot x_i$

Proof (cont'd)

• composition $f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x}))$

$$F \equiv \lambda \vec{x}. G(H_1 \vec{x}) \cdots (H_m \vec{x})$$

primitive recusion

 $f(0, \vec{y}) = g(\vec{y})$ $f(x+1, \vec{y}) = h(f(x, \vec{y}), x, \vec{y})$

 $F = \lambda x \vec{y}. \text{ ite } (\text{zero? } x) (G \vec{y}) (H (F (\text{pred } x) \vec{y}) (\text{pred } x) \vec{y})$ $= \Theta (\lambda f x \vec{y}. \text{ ite } (\text{zero? } x) (G \vec{y}) (H (f (\text{pred } x) \vec{y}) (\text{pred } x) \vec{y}))$

Proof (cont'd)

• minimization $f(\vec{x}) = (\mu i) (g(i, x_1, \dots, x_n) = 0)$

$$F \equiv H \underline{0}$$

with

$$H = \lambda i \vec{x}. \text{ ite } (\text{zero? } (G \, i \, \vec{x})) i (H (\text{succ } i) \, \vec{x})$$

= $\Theta (\lambda h \, i \, \vec{x}. \text{ ite } (\text{zero? } (G \, i \, \vec{x})) i (h (\text{succ } i) \, \vec{x}))$

Theorem

 $\lambda-{\rm definable}$ function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19-21 of lecture 9

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability

5. η -Reduction

- 6. Normalization Theorem
- 7. Test Practice

Theorem

 β -reduction has Church-Rosser property

Corollary

 $x \neq_{\beta} \lambda y.xy$

Corollary

 $\lambda-{\rm calculus}$ is ${\rm consistent}$

Remark

x and $\lambda y.xy$ are extensionally equivalent: $xM =_{\beta} (\lambda y.xy)M$ for all $M \in \Lambda$

Definition

one-step η -reduction is smallest relation $ightarrow_\eta$ on lambda terms satisfying

$$\begin{array}{ll} (\eta) & \frac{x \notin \mathsf{FV}(M)}{\lambda x.Mx \to_{\eta} M} & \frac{M \to_{\eta} M'}{MN \to_{\eta} M'N} & (\text{congruence}) \\ (\xi) & \frac{M \to_{\eta} M'}{\lambda x.M \to_{\eta} \lambda x.M'} & \frac{N \to_{\eta} N'}{MN \to_{\eta} MN'} & (\text{congruence}) \end{array}$$

Definition

one-step $\beta\eta$ -reduction $\rightarrow_{\beta\eta}$ is union of \rightarrow_{β} and \rightarrow_{η}

Theorem

 $\beta\eta$ -reduction has Church-Rosser property

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction

6. Normalization Theorem

7. Test Practice

Example

- $\blacktriangleright \ \Omega \equiv (\lambda x. xx) (\lambda x. xx) \rightarrow_{\beta} \Omega$
- ► $(\lambda x.y)\Omega$ has β -normal form: $(\lambda x.y)\Omega \rightarrow_{\beta} y$
- $(\lambda x.y)\Omega$ admits infinite reduction: $(\lambda x.y)\Omega \rightarrow_{\beta} (\lambda x.y)\Omega \rightarrow_{\beta} \cdots$

Question

how to compute β -normal forms (or $\beta\eta$ -normal forms)?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem

7. Test Practice

Test on January 29

- 15:15-18:00 in HS 10
- online registration required before 10 am on January 23
- closed book
- ► score = min (max $(\frac{2}{3}(E+P) + \frac{1}{3}T + B, T + B), 100)$

Earlier Exams/Tests

- ▶ SS 2022 (test)
- ▶ WS 2017 2
- ▶ WS 2017 1
- ▶ WS 2014 2

- ▶ WS 2014 1
- ▶ SS 2012
- ▶ SS 2008 2
- ▶ SS 2008-1

- SS 2007
- ▶ SS 2006 2
- ▶ SS 2006-1
- ▶ WS 2004

test practice on January 22

- **1. Summary of Previous Lecture**
- **2.** β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice

Important Concepts

- ▶ α-conversion
- *β*−conversion
- \blacktriangleright β -reduction
- Church–Rosser theorem

- ▶ η -reduction
- Iambda calculus
- λ -definability
- normalization theorem

homework for January 22