Computability Theory

Aart Middeldorp

Outline

1. Summary of Previous Lecture
2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. η-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$
\overline{\varphi \rightarrow \psi \rightarrow \varphi} \quad \overline{(\varphi \rightarrow \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \chi}
$$

Deduction Theorem

$\Gamma \cup\{\varphi\} \vdash_{\mathrm{h}} \psi \quad \Longleftrightarrow \quad \Gamma \vdash_{\mathrm{h}} \varphi \rightarrow \psi$

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

$$
\left\ulcorner\vdash_{n} \varphi \quad \Longleftrightarrow \quad \vdash \Vdash \varphi\right.
$$

Theorem (Curry-Howard)

(1) if $\Gamma \vdash t: \tau$ then types $(\Gamma) \vdash_{h} \tau$
(2) if $\Gamma \vdash_{\mathrm{h}} \varphi$ then $\Delta \vdash t: \varphi$ for some t and Δ with types $(\Delta)=\Gamma$

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms
(1) $\varphi \rightarrow \psi \rightarrow \varphi$
(6) $\varphi \rightarrow \varphi \vee \psi$
(2) $(\varphi \rightarrow \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \chi$
(7) $\psi \rightarrow \varphi \vee \psi$
(3) $\varphi \vee \psi \rightarrow \varphi$
(8) $(\varphi \rightarrow \chi) \rightarrow(\psi \rightarrow \chi) \rightarrow \varphi \vee \psi \rightarrow \chi$
(4) $\varphi \vee \psi \rightarrow \psi$
(9) $\perp \rightarrow \varphi$
(5) $\varphi \rightarrow \psi \rightarrow \varphi \wedge \psi$

Remarks

- $\neg \varphi$ is shortcut for $\varphi \rightarrow \perp$
- adding axiom $\varphi \vee \neg \varphi$ (law of excluded middle) gives (classical) propositional logic

Theorem

Hilbert system is sound and complete with respect to Kripke models:

$$
\Gamma \vdash_{\mathrm{h}} \varphi \quad \Longleftrightarrow \Gamma \Vdash \varphi
$$

Theorem (Finite Model Property)

$\vdash_{\mathrm{h}} \varphi \Longleftrightarrow \mathcal{C} \Vdash \varphi$ for all finite Kripke models \mathcal{C}

Theorem (Glivenko 1929)

$\vdash \varphi \quad \Longleftrightarrow \quad \vdash_{\mathrm{h}} \neg \neg \varphi$

Theorem

problem
instance: formula φ
question: $\vdash_{\mathrm{h}} \varphi$?
is decidable and PSPACE-complete

Definition (Gödel's Negative Translation)

- $p^{n}=\neg \neg p$ for propositional atoms p
- $(\varphi \wedge \psi)^{n}=\varphi^{n} \wedge \psi^{n}$
- $(\varphi \rightarrow \psi)^{\mathrm{n}}=\varphi^{\mathrm{n}} \rightarrow \psi^{\mathrm{n}}$
- $(\varphi \vee \psi)^{\mathrm{n}}=\neg\left(\neg \varphi^{\mathrm{n}} \wedge \neg \psi^{\mathrm{n}}\right)$
- $\perp^{\mathrm{n}}=\perp$

Theorem

$\vdash \varphi \Longleftrightarrow \vdash_{h} \varphi^{n}$

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, $s-m-n$ theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

α-equivalence, abstraction, arithmetization, β-reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η-reduction, fixed point theorem, intuitionistic propositional logic, λ-definability, normalization theorem, termination, typing, undecidability, Z property, ...

Literature (Combinatory Logic and Lambda Calculus)

- Henk Barendregt

The Lambda Calculus, Its Syntax and Semantics
North Holland, 1984

- Henk Barendregt, Wil Dekkers and Richard Statman

Lambda Calculus with Types
Cambridge University Press, 2013

- Herman Geuvers and Rob Nederpelt

Type Theory and Formal Proof
Cambridge University Press, 2014

- Chris Hankin

An Introduction to Lambda Calculi for Computer Scientists
King's College Publications, 2000

- J. Roger Hindley and Jonathan P. Seldin Lambda-Calculus and Combinators, an Introduction Cambridge University Press, 2008

Outline

1. Summary of Previous Lecture

2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. η-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary

Definition

set of lambda terms (Λ) is built from

- infinite set of variables $\mathcal{V}=\{x, y, z, \ldots\} \quad x \in \mathcal{V} \Rightarrow x \in \Lambda$
- application
- abstraction

$$
x \in \mathcal{V}, M \in \Lambda \Longrightarrow(\lambda x . M) \in \Lambda
$$

Examples

$$
(\lambda x \cdot x) \quad((\lambda x \cdot(x x))(\lambda y \cdot(y y))) \quad(\lambda f \cdot(\lambda x \cdot(f(f x))))
$$

Backus-Naur Form

$$
M, N::=x|(M N)|(\lambda x . M)
$$

Conventions

- outermost parentheses are omitted
- application is left-associative: MNP stands for (MN)P
- body of lambda abstraction extends as far right as possible:
$\lambda x . M N$ abbreviates $\lambda x .(M N)$ and not $(\lambda x . M) N$
- $\lambda x y z . M$ abbreviates $\lambda x . \lambda y . \lambda z . M$

Terminology

$$
\lambda x . M
$$

- λx is binder
- M is scope of binder λx
- occurrence of x in $\lambda x . M$ is bound

Notation

$M \equiv N$ if M and N are identical

Definition

- set $\mathrm{FV}(M)$ of free variables of lambda term M is inductively defined:

$$
\begin{aligned}
\mathrm{FV}(x) & =\{x\} \\
\mathrm{FV}(M N) & =\mathrm{FV}(M) \cup \mathrm{FV}(N) \\
\mathrm{FV}(\lambda x . M) & =\mathrm{FV}(M) \backslash\{x\}
\end{aligned}
$$

- lambda term M is closed (or combinator) if $\mathrm{FV}(M)=\varnothing$

Example

$$
M \equiv(\lambda x \cdot x y)(\lambda y \cdot y z) \quad \mathrm{FV}(M)=\{y, z\}
$$

Definition (Renaming)

$$
\begin{array}{rlrl}
x\{y / x\} & \equiv y & & \\
z\{y / x\} & \equiv z & & \text { if } x \neq z \\
(M N)\{y / x\} & \equiv(M\{y / x\})(N\{y / x\}) & & \\
(\lambda x \cdot M)\{y / x\} & \equiv \lambda y \cdot(M\{y / x\}) & \text { if } x \neq z
\end{array}
$$

Definition

α-equivalence is smallest congruence relation \equiv_{α} on lambda terms such that

$$
\lambda x \cdot M \equiv{ }_{\alpha} \lambda y \cdot(M\{y / x\})
$$

for all terms M and variables y that do not occur in M

$$
\begin{array}{cccc}
\text { (reflexivity) } & \overline{M \equiv{ }_{\alpha} M} & \frac{M \equiv_{\alpha} M^{\prime} N \equiv_{\alpha} N^{\prime}}{M N \equiv_{\alpha} M^{\prime} N^{\prime}} & \text { (congruence) } \\
\text { (symmetry) } & \frac{M \equiv_{\alpha} N}{N \equiv_{\alpha} M} & \frac{M \equiv_{\alpha} M^{\prime}}{\lambda x \cdot M \equiv_{\alpha} \lambda x \cdot M^{\prime}} & \text { (乡) } \\
\text { (transitivity) } & \frac{M \equiv_{\alpha} N N \equiv_{\alpha} P}{M \equiv_{\alpha} P} & \left.\frac{y \notin M}{\lambda x \cdot M \equiv_{\alpha} \lambda y \cdot(M\{y / x\})} \quad \text { (} \alpha\right)
\end{array}
$$

Examples

$$
\lambda x . y \equiv_{\alpha} \lambda z . y \quad \lambda x . y \not \equiv_{\alpha} \lambda y . y \quad(\lambda x . y) z \not \equiv_{\alpha}(\lambda x . w) z \quad(\lambda x . y)(\lambda z . z) \equiv_{\alpha}(\lambda z . y)(\lambda z . z)
$$

Barendregt's Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

$M[N / x]$ denotes result of substituting N for free occurrences of x in M :

$$
\begin{aligned}
x[N / x] & \equiv N & & \\
y[N / x] & \equiv y & & \text { if } x \neq y \\
(M P)[N / x] & \equiv(M[N / x])(P[N / x]) & & \\
(\lambda x \cdot M)[N / x] & \equiv \lambda x \cdot M & & \\
(\lambda y \cdot M)[N / x] & \equiv \lambda y \cdot(M[N / x]) & & \text { if } x \neq y \text { and } y \notin \mathrm{FV}(N) \\
(\lambda y \cdot M)[N / x] & \equiv \lambda z \cdot(M\{z / y\}[N / x]) & & \text { if } x \neq y, y \in \operatorname{FV}(N) \text { and } z \text { is fresh }
\end{aligned}
$$

Convention

lambda terms are identified up to α-equivalence

Definition

one-step β-reduction is smallest relation \rightarrow_{β} on lambda terms satisfying
(β)
$\frac{M \rightarrow_{\beta} M^{\prime}}{M N \rightarrow_{\beta} M^{\prime} N}$ (congruence)
(छ) $\frac{M \rightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \rightarrow_{\beta} \lambda x \cdot M^{\prime}}$

$$
\frac{N \rightarrow_{\beta} N^{\prime}}{M N \rightarrow_{\beta} M N^{\prime}} \quad \text { (congruence) }
$$

Example

$$
\begin{array}{rlr}
(\lambda x \cdot y)((\lambda z \cdot z z)(\lambda w \cdot w)) & \rightarrow_{\beta}(\lambda x \cdot y)((\lambda w \cdot w)(\lambda w \cdot w)) & \text { reduct } \\
& \rightarrow_{\beta}(\lambda x \cdot y)(\lambda w \cdot w) \rightarrow_{\beta} y &
\end{array}
$$

Definitions

- β-normal form is lambda term without β-redexes
- β-conversion $\left(={ }_{\beta}\right)$ is transitive symmetric reflexive closure of \rightarrow_{β}

Definition

lambda term N is fixed point of lambda term F if $F N={ }_{\beta} N$

Definition (Turing's Fixed Point Combinator)

$\Theta \equiv A A$ with $A=\lambda x y \cdot y(x x y)$

Theorem

every lambda term has fixed point

Proof

$N \equiv \Theta F$ is fixed point of F :

$$
N \equiv(\lambda x y \cdot y(x x y)) A F \rightarrow_{\beta}(\lambda y \cdot y(A A y)) F \rightarrow_{\beta} F(A A F) \equiv F(\Theta F) \equiv F N
$$

Outline

1. Summary of Previous Lecture
2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. η-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary

Church-Rosser Theorem

Corollary

- $M={ }_{\beta} N \quad \Longrightarrow \quad \exists Q$ such that $M \rightarrow_{\beta}^{*} Q$ and $N \rightarrow_{\beta}^{*} Q$
- $M={ }_{\beta} N$ and N is β-normal form $\Longrightarrow M \rightarrow_{\beta}^{*} N$
- $M={ }_{\beta} N$ and M, N are β-normal forms $\Longrightarrow M \equiv{ }_{\alpha} N$
- $M={ }_{\beta} N \quad \Longrightarrow \quad$ both or neither of M, N have β-normal form

(a)

(b)

(c)
- β-reduction satisfies (b)
- $(\mathrm{b}) \nRightarrow(\mathrm{a})$
- (c) \Longrightarrow (a)
- β-reduction does not satisfy (c): $(\lambda x \cdot x x) z_{\beta} \leftarrow(\lambda x \cdot x x)((\lambda y \cdot y) z) \rightarrow_{\beta}(\lambda y \cdot y) z((\lambda y \cdot y) z)$

Definition (Parallel Reduction)

$$
\overline{M \oiint_{\beta} M} \quad \overline{(\lambda x . M) N \oiint_{\beta} M[N / x]} \quad \frac{M \oiint_{\beta} M^{\prime}}{\lambda x \cdot M \oiint_{\beta} \lambda x \cdot M^{\prime}} \quad \frac{M \oiint_{\beta} M^{\prime} N \not H_{\beta} N^{\prime}}{M N \not H_{\beta} M^{\prime} N^{\prime}}
$$

Problem

\rightarrow lacks diamond property: $(\lambda x . x) I{ }_{\beta} \nleftarrow(\lambda x \cdot(\lambda y . x) I)(I I) H_{\beta}(\lambda y . I I) I$ with $I=\lambda x . x$

Definition (Parallel Reduction Revisited)

$$
\stackrel{M \rightarrow_{\beta} M}{ } \quad \frac{M \rightarrow_{\beta} M^{\prime} \quad N \rightarrow_{\beta} N^{\prime}}{(\lambda x \cdot M) N \rightarrow_{\beta} M^{\prime}\left[N^{\prime} / x\right]} \quad \frac{M \rightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \rightarrow_{\beta} \lambda x \cdot M^{\prime}} \quad \frac{M \rightarrow_{\beta} M^{\prime} N \rightarrow_{\beta} N^{\prime}}{M N \rightarrow_{\beta} M^{\prime} N^{\prime}}
$$

Lemma

$$
\rightarrow_{\beta} \subseteq \rightarrow_{\beta} \subseteq \rightarrow_{\beta}^{*}
$$

Lemma (Substitution)

if $M \rightarrow_{\beta} M^{\prime}$ and $U \rightarrow_{\beta} U^{\prime}$ then $M[U / y] \rightarrow_{\beta} M^{\prime}\left[U^{\prime} / y\right]$

Definition

M^{*} is maximal parallel one-step reduct of M :
(1) $x^{*}=x$
(2) $(P N)^{*}=P^{*} N^{*}$ if $P N$ is no β-redex
(3) $((\lambda x \cdot Q) N)^{*}=Q^{*}\left[N^{*} / x\right]$
(4) $(\lambda x \cdot N)^{*}=\lambda x \cdot N^{*}$

Lemma

if $M \rightarrow{ }_{\beta} N$ then $N \rightarrow{ }_{\beta} M^{*}$

Lemma (Diamond Property of Parallel Reduction)

$\forall M, N, P \in \Lambda$ such that $M \rightarrow \beta N$ and $M \rightarrow_{\beta} P$
$\exists Q \in \Lambda$ such that $N \rightarrow_{\beta} Q$ and $P \rightarrow_{\beta} Q$

Proof

take $Q \equiv M^{*}$

Corollary

β-reduction has Church-Rosser property

Outline

1. Summary of Previous Lecture
2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. η-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary

Definitions

- $\mathrm{T} \equiv \lambda x y \cdot x \quad \mathrm{~F} \equiv \lambda x y \cdot y \quad$ and $\equiv \lambda a b \cdot a b \mathrm{~F}$
- ite $\equiv \lambda x$. x

Lemmata

- and TT $\rightarrow_{\beta}^{*} \mathrm{~T} \quad$ and $\mathrm{TF} \rightarrow{ }_{\beta}^{*} \mathrm{~F} \quad$ and $\mathrm{FT} \rightarrow{ }_{\beta}^{*} \mathrm{~F} \quad$ and $\mathrm{FF} \rightarrow{ }_{\beta}^{*} \mathrm{~F}$
- ite TMN $\rightarrow{ }_{\beta}^{*} M$ ite FMN $\rightarrow{ }_{\beta}^{*} N$

Definitions (Church Numerals)

- for every natural number n

$$
\underline{n} \equiv \lambda f x . f^{n} x \quad \text { where } \quad F^{n} M \equiv \begin{cases}M & \text { if } n=0 \\ F\left(F^{n-1} M\right) & \text { if } n>0\end{cases}
$$

- succ $\equiv \lambda n f x . f(n f x)$

WS 2023
Computability Theory

Lemma

$\operatorname{succ} \underline{n} \rightarrow_{\beta}^{*} \underline{n+1}$

Proof

$$
\begin{aligned}
\operatorname{succ} \underline{n} \equiv(\lambda n f x . f(n f x))\left(\lambda f x . f^{n} x\right) & \rightarrow_{\beta} \lambda f x . f\left(\left(\lambda f x . f^{n} x\right) f x\right) \rightarrow_{\beta} \lambda f x . f\left(\left(\lambda x . f^{n} x\right) x\right) \\
& \rightarrow_{\beta} \lambda f x . f\left(f^{n} x\right) \equiv \lambda f x . f^{n+1} x \equiv \underline{n+1}
\end{aligned}
$$

Definitions

- zero? $\equiv \lambda n . n(\lambda x . F) T \quad$ add $\equiv \lambda n m f x . n f(m f x) \quad m u l \equiv \lambda n m f . n(m f)$

Lemmata

- zero? $\underline{n} \rightarrow_{\beta}^{*}\left\{\begin{array}{ll}T & \text { if } n=0 \\ F & \text { if } n>0\end{array} \quad\right.$ add $\underline{n} \underline{m} \rightarrow_{\beta}^{*} \underline{n+m} \quad$ mul $\underline{n} \underline{m} \rightarrow_{\beta}^{*} \underline{n \cdot m}$

Definition

$$
\text { pred } \equiv \lambda n . n(\lambda u v . v(u \text { succ }))(\lambda z . \underline{0})(\lambda z . z)
$$

Lemma

pred $\underline{n} \rightarrow_{\beta}^{*} \begin{cases}\underline{0} & \text { if } n=0 \\ \underline{n-1} & \text { if } n>0\end{cases}$

Proof

- pred $\underline{0} \rightarrow_{\beta} \underline{0}(\lambda u v . v(u$ succ $))(\lambda z . \underline{0})(\lambda z . z) \rightarrow_{\beta}^{*}(\lambda z . \underline{0})(\lambda z . z) \rightarrow_{\beta} \underline{0}$
- pred $\underline{n+1} \rightarrow_{\beta}^{*} \underline{n} \quad$ (homework exercise)

Example

representing factorial function in lambda calculus

$$
\text { fac } n=\text { ite }(\text { zero? } n) \underline{1}(\operatorname{mul} n(\operatorname{fac}(\operatorname{pred} n)))
$$

- fac $=\lambda n$.ite $($ zero? $n) \underline{1}(\operatorname{mul} n(f a c(\operatorname{pred} n)))$
- fac $=(\lambda f n$. ite $($ zero? $n) \underline{1}($ mul $n(f($ pred $n))))$ fac
- fac $=\Theta F$ with $F \equiv(\lambda f n$. ite $($ zero? $n) \underline{1}(\operatorname{mul} n(f(\operatorname{pred} n))))$

```
fac 2}\mp@subsup{->}{\beta}{*}F\mathrm{ fac }\underline{2
    ->*
    ->
    ->*
    ->*
    ->*
    ->*
```


Definition

partial function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is λ-definable if \exists combinator F such that

$$
\begin{array}{ll}
f\left(x_{1}, \ldots, x_{n}\right)=y & \Longrightarrow F \underline{x_{1}} \cdots \underline{x_{n}} \rightarrow_{\beta}^{*} \underline{y} \\
f\left(x_{1}, \ldots, x_{n}\right) \text { is undefined } & \Longrightarrow F \underline{x_{1}} \cdots \underline{x_{n}} \text { is not normalizing }
\end{array}
$$

for all $x_{1}, \ldots, x_{n}, y \in \mathbb{N}$

Theorem

partial recursive functions are λ-definable

Proof

- zero function
- successor function
- projection functions

$$
\begin{array}{ll}
z(x)=0 & \text { zero } \equiv \lambda x \cdot \underline{0} \\
\mathrm{~s}(x)=x+1 & \text { succ } \equiv \lambda n f x \cdot f(n \\
\pi_{i}^{n}\left(x_{1}, \ldots, x_{n}\right)=x_{i} & \pi_{i}^{n} \equiv \lambda x_{1} \cdots x_{n} \cdot x_{i}
\end{array}
$$

Proof (cont'd)

- composition $f(\vec{x})=g\left(h_{1}(\vec{x}), \ldots, h_{m}(\vec{x})\right)$

$$
F \equiv \lambda \vec{x} \cdot G\left(H_{1} \vec{x}\right) \cdots\left(H_{m} \vec{x}\right)
$$

- primitive recusion

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(f(x, \vec{y}), x, \vec{y})
\end{aligned}
$$

$$
\begin{aligned}
F & =\lambda x \vec{y} . \text { ite }(\text { zero? } x)(G \vec{y})(H(F(\operatorname{pred} x) \vec{y})(\operatorname{pred} x) \vec{y}) \\
& =\Theta(\lambda f x \vec{y} . \text { ite }(\text { zero? } x)(G \vec{y})(H(f(\operatorname{pred} x) \vec{y})(\operatorname{pred} x) \vec{y}))
\end{aligned}
$$

Proof (cont'd)

- minimization

$$
\begin{aligned}
& f(\vec{x})=(\mu i)\left(g\left(i, x_{1}, \ldots, x_{n}\right)=0\right) \\
& F \equiv H \underline{0}
\end{aligned}
$$

with

$$
\begin{aligned}
H & =\lambda i \vec{x} \text {. ite }(\text { zero? }(G i \vec{x})) i(H(\operatorname{succ} i) \vec{x}) \\
& =\Theta(\lambda h i \vec{x} \text {. ite }(\text { zero? }(G i \vec{x})) i(h(\operatorname{succ} i) \vec{x}))
\end{aligned}
$$

Theorem

λ-definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19-21 of lecture 9

Outline

```
1. Summary of Previous Lecture
2. }\beta\mathrm{ -Reduction
3. Church-Rosser Theorem
4. }\lambda\mathrm{ -Definability
5. \(\eta\)-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary
```


Theorem

β-reduction has Church-Rosser property

Corollary

$x \neq \beta \quad \lambda y . x y$

Corollary

λ-calculus is consistent

Remark

x and $\lambda y . x y$ are extensionally equivalent: $\quad x M={ }_{\beta}(\lambda y . x y) M$ for all $M \in \Lambda$

Definition

one-step η-reduction is smallest relation \rightarrow_{η} on lambda terms satisfying
(η) $\frac{x \notin \mathrm{FV}(M)}{\lambda x . M x \rightarrow_{\eta} M}$
$\frac{M \rightarrow_{\eta} M^{\prime}}{M N \rightarrow_{\eta} M^{\prime} N} \quad$ (congruence)
(छ) $\frac{M \rightarrow_{\eta} M^{\prime}}{\lambda x \cdot M \rightarrow_{\eta} \lambda x \cdot M^{\prime}}$
$\frac{N \rightarrow_{\eta} N^{\prime}}{M N \rightarrow_{\eta} M N^{\prime}} \quad$ (congruence)

Definition

one-step $\beta \eta$-reduction $\rightarrow_{\beta \eta}$ is union of \rightarrow_{β} and \rightarrow_{η}

Theorem

$\beta \eta$-reduction has Church-Rosser property

Outline

1. Summary of Previous Lecture
2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. n-Reduction

6. Normalization Theorem

7. Test Practice
8. Summary

Example

$-\Omega \equiv(\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow_{\beta} \Omega$

- $(\lambda x . y) \Omega$ has β-normal form: $\quad(\lambda x . y) \Omega \rightarrow_{\beta} y$
- $(\lambda x . y) \Omega$ admits infinite reduction: $(\lambda x . y) \Omega \rightarrow_{\beta}(\lambda x . y) \Omega \rightarrow_{\beta} \cdots$

Question

how to compute β-normal forms (or $\beta \eta$-normal forms) ?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

Outline

1. Summary of Previous Lecture
2. β-Reduction
3. Church-Rosser Theorem
4. λ-Definability
5. η-Reduction
6. Normalization Theorem
7. Test Practice
8. Summary

Test on January 29

- 15:15-18:00 in HS 10
- online registration required before 10 am on January 23
- closed book
- score $=\min \left(\max \left(\frac{2}{3}(E+P)+\frac{1}{3} T+B, T+B\right), 100\right)$

Earlier Exams/Tests

- SS 2022 (test) \quad WS 2014-1
- WS 2017-2
- SS 2012
- SS 2007
- WS 2017-1
- SS 2008-2
- SS 2006-1
-WS 2014-2
- SS 2008-1
- WS 2004
test practice on January 22

Outline

```
1. Summary of Previous Lecture
2. \beta-Reduction
3. Church-Rosser Theorem
4. }\lambda\mathrm{ -Definability
5. }\eta\mathrm{ -Reduction
6. Normalization Theorem
7. Test Practice
```

8. Summary

Important Concepts

- α-conversion
- β-conversion
- β-reduction
- Church-Rosser theorem
- η-reduction
- lambda calculus
λ-definability
- normalization theorem

