

WS 2023 lecture 13

Computability Theory

Aart Middeldorp

Definition

Hilbert system (for implication fragment) consists of two axioms and modus ponens:

$$\overline{\varphi \to \psi \to \varphi}$$

$$\overline{(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi}$$

$$\frac{\varphi \qquad \varphi \rightarrow}{\psi}$$

Deduction Theorem

$$\Gamma \cup \{\varphi\} \vdash_{\mathsf{h}} \psi \iff \Gamma \vdash_{\mathsf{h}} \varphi \to \psi$$

Theorem

Hilbert system is sound and complete with respect to Kripke models for implication fragment:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

WS 2023 Computability Theory lecture 13

Theorem (Curry-Howard)

- of if $\Gamma \vdash t : \tau$ then types(Γ) $\vdash_h \tau$
- 2 if $\Gamma \vdash_h \varphi$ then $\Delta \vdash t : \varphi$ for some t and Δ with types $(\Delta) = \Gamma$

Definition

Hilbert system for intuitionistic propositional logic consists of modus ponens and axioms

① $\varphi \to \psi \to \varphi$

- **6** $\varphi \to \varphi \lor \psi$
- $(\varphi \to \psi \to \chi) \to (\varphi \to \psi) \to \varphi \to \chi$
- $\mathfrak{T} \quad \psi \to \varphi \vee \psi$

 $(\varphi \to \chi) \to (\psi \to \chi) \to \varphi \lor \psi \to \chi$

 $\mathbf{4} \quad \varphi \vee \psi \to \psi$

 \bigcirc $\bot \rightarrow \varphi$

Remarks

- ightharpoonup is shortcut for $\varphi \to \bot$
- ▶ adding axiom $\varphi \lor \neg \varphi$ (law of excluded middle) gives (classical) propositional logic

Theorem

Hilbert system is sound and complete with respect to Kripke models:

$$\Gamma \vdash_{\mathsf{h}} \varphi \iff \Gamma \Vdash \varphi$$

Theorem (Finite Model Property)

 $\vdash_{\mathsf{h}} \varphi \iff \mathcal{C} \Vdash \varphi \text{ for all finite Kripke models } \mathcal{C}$

Theorem (Glivenko 1929)

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \neg \neg \varphi$$

WS 2023 Computability Theory lecture 13

1. Summary of Previous Lecture

Theorem

problem

instance: formula φ question: $\vdash_h \varphi$?

is decidable and PSPACE-complete

Definition (Gödel's Negative Translation)

- $ightharpoonup p^n = \neg \neg p$ for propositional atoms p
- $(\varphi \to \psi)^{\mathbf{n}} = \varphi^{\mathbf{n}} \to \psi^{\mathbf{n}}$

 $(\varphi \wedge \psi)^{\mathsf{n}} = \varphi^{\mathsf{n}} \wedge \psi^{\mathsf{n}}$

 $(\varphi \vee \psi)^{\mathbf{n}} = \neg (\neg \varphi^{\mathbf{n}} \wedge \neg \psi^{\mathbf{n}})$

Theorem

$$\vdash \varphi \iff \vdash_{\mathsf{h}} \varphi^{\mathsf{n}}$$

WS 2023 Computability Theory lecture 13

Part I: Recursive Function Theory

Ackermann function, bounded minimization, bounded recursion, course-of-values recursion, diagonalization, diophantine sets, elementary functions, fixed point theorem, Fibonacci numbers, Gödel numbering, Gödel's β function, Grzegorczyk hierarchy, loop programs, minimization, normal form theorem, partial recursive functions, primitive recursion, recursive enumerability, recursive inseparability, s-m-n theorem, total recursive functions, undecidability, while programs, ...

Part II: Combinatory Logic and Lambda Calculus

 α -equivalence, abstraction, arithmetization, β -reduction, CL-representability, combinators, combinatorial completeness, Church numerals, Church-Rosser theorem, Curry-Howard isomorphism, de Bruijn notation, η -reduction, fixed point theorem, intuitionistic propositional logic, λ -definability, normalization theorem, termination, typing, undecidability, Z property, ...

Literature (Combinatory Logic and Lambda Calculus)

- ► Henk Barendreat The Lambda Calculus. Its Syntax and Semantics North Holland, 1984
- ► Henk Barendregt, Wil Dekkers and Richard Statman Lambda Calculus with Types Cambridge University Press, 2013
- ► Herman Geuvers and Rob Nederpelt Type Theory and Formal Proof Cambridge University Press, 2014
- Chris Hankin An Introduction to Lambda Calculi for Computer Scientists King's College Publications, 2000
- ▶ J. Roger Hindley and Jonathan P. Seldin Lambda-Calculus and Combinators, an Introduction Cambridge University Press, 2008

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

WS 2023 Computability Theory lecture 13

Definition

set of lambda terms (Λ) is built from

- ▶ infinite set of variables $V = \{x, y, z, ...\}$ $x \in V \implies x \in \Lambda$
- $M, N \in \Lambda \implies (MN) \in \Lambda$ application
- abstraction $x \in \mathcal{V}, M \in \Lambda \implies (\lambda x.M) \in \Lambda$

Examples

 $(\lambda x.x)$

 $((\lambda x.(xx))(\lambda y.(yy)))$

 $(\lambda f.(\lambda x.(f(fx))))$

Backus-Naur Form

$$M, N ::= x \mid (MN) \mid (\lambda x. M)$$

WS 2023 Computability Theory lecture 13

Conventions

- outermost parentheses are omitted
- ▶ application is left-associative: MNP stands for (MN)P
- ▶ body of lambda abstraction extends as far right as possible: $\lambda x.MN$ abbreviates $\lambda x.(MN)$ and not $(\lambda x.M)N$
- \blacktriangleright $\lambda xyz.M$ abbreviates $\lambda x.\lambda y.\lambda z.M$

Terminology

 $\lambda x.M$

- $\triangleright \lambda x$ is binder
- ▶ M is scope of binder λx
- \blacktriangleright occurrence of x in $\lambda x.M$ is bound

Notation

 $M \equiv N$ if M and N are identical

Definition

 \blacktriangleright set FV(M) of free variables of lambda term M is inductively defined:

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

▶ lambda term M is closed (or combinator) if $FV(M) = \emptyset$

$$M \equiv (\lambda x. x \mathbf{y})(\lambda y. y \mathbf{z})$$

$$FV(M) = \{y, z\}$$

Definition (Renaming)

$$x\{y/x\} \equiv y$$

$$z\{y/x\} \equiv z \qquad \text{if } x \neq z$$

$$(MN)\{y/x\} \equiv (M\{y/x\})(N\{y/x\})$$

$$(\lambda x.M)\{y/x\} \equiv \lambda y.(M\{y/x\})$$

$$(\lambda z.M)\{y/x\} \equiv \lambda z.(M\{y/x\}) \qquad \text{if } x \neq z$$

Definition

 α -equivalence is smallest congruence relation \equiv_{α} on lambda terms such that

$$\lambda x.M \equiv_{\alpha} \lambda y.(M\{y/x\})$$

for all terms M and variables y that do not occur in M

WS 2023 Computability Theory lecture 13

α -equivalence

(reflexivity)
$$\frac{M \equiv_{\alpha} M}{M \equiv_{\alpha} M} \qquad \frac{M \equiv_{\alpha} M' \quad N \equiv_{\alpha} N'}{MN \equiv_{\alpha} M'N'} \qquad \text{(congruence)}$$

(symmetry)
$$\frac{M \equiv_{\alpha} N}{N \equiv_{\alpha} M} \qquad \frac{M \equiv_{\alpha} M'}{\lambda x. M \equiv_{\alpha} \lambda x. M'} \qquad (\xi)$$

Examples

$$\lambda x.y \equiv_{\alpha} \lambda z.y \quad \lambda x.y \not\equiv_{\alpha} \lambda y.y \quad (\lambda x.y)z \not\equiv_{\alpha} (\lambda x.w)z \quad (\lambda x.y)(\lambda z.z) \equiv_{\alpha} (\lambda z.y)(\lambda z.z)$$

Barendregt's Variable Convention

free variables are different from bound variables in lambda terms occurring in certain context

Definition

M[N/x] denotes result of substituting N for free occurrences of x in M:

$$x[N/x] \equiv N$$

$$y[N/x] \equiv y$$

$$(MP)[N/x] \equiv (M[N/x])(P[N/x])$$

$$(\lambda x.M)[N/x] \equiv \lambda x.M$$

$$(\lambda y.M)[N/x] \equiv \lambda y.(M[N/x])$$
 if $x \neq y$ and $y \notin FV(N)$

$$(\lambda y.M)[N/x] \equiv \lambda z.(M\{z/y\}[N/x])$$
 if $x \neq y, y \in FV(N)$ and z is fresh

if $x \neq y$

Convention

lambda terms are identified up to α -equivalence

Definition

one-step β -reduction is smallest relation \rightarrow_{β} on lambda terms satisfying

$$(\beta) \quad \frac{}{(\lambda x.M)N \to_{\beta} M[N/x]}$$

$$(\beta) \quad \frac{M \to_{\beta} M'}{(\lambda x.M)N \to_{\beta} M[N/x]} \qquad \qquad \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N} \quad \text{(congruence)}$$

$$(\xi) \qquad \frac{M \to_{\beta} M'}{\lambda x. M \to_{\beta} \lambda x. M'}$$

$$(\xi) \qquad \frac{M \to_{\beta} M'}{\lambda x.M \to_{\beta} \lambda x.M'} \qquad \qquad \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'} \quad \text{(congruence)}$$

Example

$$(\lambda x.y)((\lambda z.zz)(\lambda w.w)) \rightarrow_{\beta} (\lambda x.y)((\lambda w.w)(\lambda w.w))$$
 reduct $\rightarrow_{\beta} (\lambda x.y)(\lambda w.w) \rightarrow_{\beta} y$

Definitions

- ▶ β -normal form is lambda term without β -redexes
- ▶ β -conversion (= $_{\beta}$) is transitive symmetric reflexive closure of \rightarrow_{β}

Definition

lambda term N is fixed point of lambda term F if $FN =_{\beta} N$

Definition (Turing's Fixed Point Combinator)

 $\Theta \equiv AA$ with $A = \lambda xy.y(xxy)$

Theorem

every lambda term has fixed point

Proof

 $N \equiv \Theta F$ is fixed point of F:

$$N \equiv (\lambda x y. y(xxy)) AF \rightarrow_{\beta} (\lambda y. y(AAy)) F \rightarrow_{\beta} F(AAF) \equiv F(\Theta F) \equiv FN$$

WS 2023 Computability Theory lecture 13

Outline

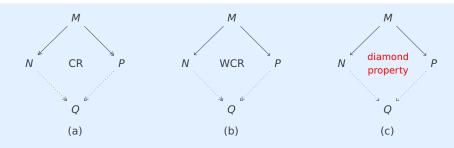
- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

WS 2023 Computability Theory lecture 13

Church-Rosser Theorem

Corollary

- $M =_{\beta} N \implies \exists Q \text{ such that } M \to_{\beta}^* Q \text{ and } N \to_{\beta}^* Q$
- ▶ $M =_{\beta} N$ and N is β -normal form $\implies M \to_{\beta}^* N$
- ▶ $M =_{\beta} N$ and M, N are β -normal forms $\implies M \equiv_{\alpha} N$
- ▶ $M =_{\beta} N$ \implies both or neither of M, N have β -normal form



- \triangleright β -reduction satisfies (b)
- ▶ (b) ⇒ (a)
- ► (c) ⇒ (a)
- $(\lambda x.xx)z \ _{\beta} \leftarrow (\lambda x.xx)((\lambda y.y)z) \rightarrow_{\beta} (\lambda y.y)z((\lambda y.y)z)$ \triangleright β -reduction does not satisfy (c):

Definition (Parallel Reduction)

$$\frac{M \implies_{\beta} M}{(\lambda x.M)N \implies_{\beta} M[N/x]} \frac{M \implies_{\beta} M^{\gamma}}{\lambda x.M \implies_{\beta} \lambda x.M^{\gamma}}$$

Problem

 \implies lacks diamond property: $(\lambda x.x)I_{\beta} \leftarrow (\lambda x.(\lambda y.x)I)(II) \rightarrow_{\beta} (\lambda y.II)I$ with $I = \lambda x.x$

Definition (Parallel Reduction Revisited)

$$\frac{M \xrightarrow{\beta} M' \qquad N \xrightarrow{\beta} N'}{(\lambda x.M)N \xrightarrow{\beta} M'[N'/x]} \qquad \frac{M \xrightarrow{\beta} M'}{\lambda x.M \xrightarrow{\beta} \lambda x.M'} \qquad \frac{M \xrightarrow{\beta} M' \qquad N \xrightarrow{\beta} N'}{MN \xrightarrow{\beta} M'N'}$$

Lemma

$$\rightarrow_{\beta} \subseteq \longrightarrow_{\beta} \subseteq \rightarrow_{\beta}^*$$

WS 2023 Computability Theory lecture 13

Lemma (Diamond Property of Parallel Reduction)

 $\forall M, N, P \in \Lambda$ such that $M \xrightarrow{}_{\beta} N$ and $M \xrightarrow{}_{\beta} P$ $\exists Q \in \Lambda \text{ such that } N \xrightarrow{\bullet}_{\beta} Q \text{ and } P \xrightarrow{\bullet}_{\beta} Q$

Proof

take $Q \equiv M^*$

Corollary

 β -reduction has Church-Rosser property

Lemma (Substitution)

if $M \longrightarrow_{\beta} M'$ and $U \longrightarrow_{\beta} U'$ then $M[U/y] \longrightarrow_{\beta} M'[U'/y]$

Definition

 M^* is maximal parallel one-step reduct of M:

- 1) $x^* = x$
- ② $(PN)^* = P^*N^*$ if PN is no β -redex
- $((\lambda x.Q)N)^* = Q^*[N^*/x]$
- $(\lambda x.N)^* = \lambda x.N^*$

Lemma

if $M \longrightarrow_{\beta} N$ then $N \longrightarrow_{\beta} M^*$

WS 2023 Computability Theory lecture 13

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

Definitions

- ightharpoonup $T \equiv \lambda x y. x$ $F \equiv \lambda x y. y$ and $\equiv \lambda a b. a b F$
- ▶ ite $\equiv \lambda x.x$

Lemmata

- ▶ and TT \rightarrow_{β}^* T and TF \rightarrow_{β}^* F and FT \rightarrow_{β}^* F and FF \rightarrow_{β}^* F
- ▶ ite T $MN \rightarrow_{\beta}^{*} M$ ite F $MN \rightarrow_{\beta}^{*} N$

Definitions (Church Numerals)

▶ for every natural number *n*

$$\underline{n} \equiv \lambda f x. f^n x$$
 where $F^n M \equiv \begin{cases} M & \text{if } n = 0 \\ F(F^{n-1} M) & \text{if } n > 0 \end{cases}$

- succ $\equiv \lambda n f x. f(n f x)$
 - WS 2023 Computability Theory lecture 13

Lemma

 $\operatorname{succ} n \to_{\beta}^* n + 1$

Proof

succ
$$\underline{n} \equiv (\lambda n f x. f(n f x))(\lambda f x. f^n x) \rightarrow_{\beta} \lambda f x. f((\lambda f x. f^n x) f x) \rightarrow_{\beta} \lambda f x. f((\lambda x. f^n x) x)$$

$$\rightarrow_{\beta} \lambda f x. f(f^n x) \equiv \lambda f x. f^{n+1} x \equiv n+1$$

Definitions

ightharpoonup zero? $\equiv \lambda n.n(\lambda x.F)T$ $add \equiv \lambda nmfx.nf(mfx)$ $mul \equiv \lambda nmf.n(mf)$

Lemmata

- - WS 2023 Computability Theory lecture 13 4. λ Definability

Definition

pred $\equiv \lambda n.n(\lambda uv.v(u \text{ succ}))(\lambda z.0)(\lambda z.z)$

Lemma

$$\operatorname{pred} \underline{n} \to_{\beta}^{*} \begin{cases} \underline{0} & \text{if } n = 0 \\ n - 1 & \text{if } n > 0 \end{cases}$$

Proof

- ▶ pred 0 \rightarrow_{β} 0($\lambda uv.v(u \text{ succ})$)($\lambda z.0$)($\lambda z.z$) \rightarrow_{β}^{*} ($\lambda z.0$)($\lambda z.z$) \rightarrow_{β} 0
- ▶ pred $n + 1 \rightarrow_{\beta}^{*} n$ (homework exercise)

representing factorial function in lambda calculus

$$fac n = ite(zero?n) \underline{1}(mul n (fac(pred n)))$$

- fac = λn . ite (zero? n) 1 (mul n (fac (pred n)))
- ► fac = $(\lambda f n$. ite (zero? n) 1 (mul n (f (pred n)))) fac
- ▶ fac = ΘF with $F \equiv (\lambda f n$ ite (zero? n) 1 (mul n (f (pred n))))

fac
$$\underline{2} \to_{\beta}^* F$$
 fac $\underline{2}$
 \to_{β}^* ite (zero? $\underline{2}$) $\underline{1}$ (mul $\underline{2}$ (fac (pred $\underline{2}$)))
 \to_{β}^* ite F $\underline{1}$ (mul $\underline{2}$ (fac (pred $\underline{2}$)))
 \to_{β}^* mul $\underline{2}$ (fac (pred $\underline{2}$))
 \to_{β}^* mul $\underline{2}$ (fac $\underline{1}$)
 $\to_{\beta}^* \cdots$
 \to_{β}^* mul $\underline{2}$ (mul $\underline{1}$ (fac $\underline{0}$)) \to_{β}^* mul $\underline{2}$ (mul $\underline{1}$ $\underline{1}$) $\to_{\beta}^* \underline{2}$

Definition

partial function $f: \mathbb{N}^n \to \mathbb{N}$ is λ -definable if \exists combinator F such that

$$f(x_1,\ldots,x_n)=y \implies F\underline{x_1}\cdots\underline{x_n}\to_{\beta}^*\underline{y}$$

$$f(x_1, ..., x_n)$$
 is undefined $\implies F\underline{x_1} \cdots \underline{x_n}$ is not normalizing

for all $x_1, \ldots, x_n, y \in \mathbb{N}$

Theorem

partial recursive functions are λ -definable

Proof

- zero function
 - z(x) = 0
- zero $\equiv \lambda x.0$

- successor function
- s(x) = x + 1
- $succ \equiv \lambda nfx.f(nfx)$
- ▶ projection functions $\pi_i^n(x_1, ..., x_n) = x_i$ $\pi_i^n \equiv \lambda x_1 \cdots x_n \cdot x_i$

29/40

Proof (cont'd)

 $f(\vec{x}) = g(h_1(\vec{x}), \dots, h_m(\vec{x}))$ composition

$$F \equiv \lambda \vec{x} \cdot G(H_1 \vec{x}) \cdots (H_m \vec{x})$$

primitive recusion

$$f(x+1,\vec{y}) = h(f(x,\vec{y}),x,\vec{y})$$

 $f(0, \vec{y}) = g(\vec{y})$

 $F = \lambda x \vec{y}$. ite (zero? x) ($G \vec{y}$) ($H(F(\text{pred } x) \vec{y})$ (pred x) \vec{y}) $=\Theta(\lambda f x \vec{y}. ite(zero?x)(G\vec{y})(H(f(pred x)\vec{y})(pred x)\vec{y}))$

Proof (cont'd)

- minimization
- $f(\vec{x}) = (\mu i) (g(i, x_1, \dots, x_n) = 0)$
- $F \equiv H 0$

with

$$H = \lambda i \vec{x}. \text{ ite } (\text{zero?} (G i \vec{x})) i (H (\text{succ } i) \vec{x})$$

= $\Theta (\lambda h i \vec{x}. \text{ ite } (\text{zero?} (G i \vec{x})) i (h (\text{succ } i) \vec{x}))$

Theorem

 λ -definable function are partial recursive

Remark

however, cf. slide 28 of lecture 8 and slides 19-21 of lecture 9

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

Theorem

 β -reduction has Church-Rosser property

Corollary

 $x \neq_{\beta} \lambda y.xy$

Corollary

 λ -calculus is consistent

Remark

x and $\lambda y.xy$ are extensionally equivalent: $xM =_{\beta} (\lambda y.xy)M$ for all $M \in \Lambda$

WS 2023 Computability Theory lecture 13

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

Definition

one-step η -reduction is smallest relation \rightarrow_{η} on lambda terms satisfying

$$(\eta) \qquad \frac{x \notin FV(M)}{\lambda x. Mx \to_{\eta} M} \qquad \qquad \frac{M \to_{\eta} M'}{MN \to_{\eta} M'N} \quad \text{(congruence)}$$

$$(\xi) \quad \frac{M \to_{\eta} M'}{\lambda x.M \to_{\eta} \lambda x.M'} \qquad \qquad \frac{N \to_{\eta} N'}{MN \to_{\eta} MN'} \quad \text{(congruence)}$$

Definition

one-step $\beta\eta$ -reduction $\rightarrow_{\beta\eta}$ is union of \rightarrow_{β} and \rightarrow_{η}

Theorem

 $\beta\eta$ -reduction has Church-Rosser property

WS 2023 Computability Theory lecture 13

Example

- $(\lambda x.y)\Omega$ has β -normal form: $(\lambda x.y)\Omega \rightarrow_{\beta} y$
- ▶ $(\lambda x.y)\Omega$ admits infinite reduction: $(\lambda x.y)\Omega \rightarrow_{\beta} (\lambda x.y)\Omega \rightarrow_{\beta} \cdots$

Question

how to compute β -normal forms (or $\beta\eta$ -normal forms)?

Answer

always select leftmost redex

Normalization Theorem

leftmost reduction strategy is normalizing

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

WS 2023 Computability Theory lecture 13

Test on January 29

- ▶ 15:15 18:00 in HS 10
- ▶ online registration required before 10 am on January 23
- closed book
- score = min (max $(\frac{2}{3}(E+P) + \frac{1}{3}T + B, T + B)$, 100)

Earlier Exams/Tests

- ► SS 2022 (test)
- ► WS 2014 1

▶ SS 2007

► WS 2017 – 2

▶ SS 2012

► SS 2006 - 2

► WS 2017 - 1 ► WS 2014 – 2 ► SS 2008 – 2

▶ SS 2006 - 1

- ► SS 2008 1

▶ WS 2004

test practice on January 22

Outline

- 1. Summary of Previous Lecture
- 2. β -Reduction
- 3. Church-Rosser Theorem
- 4. λ -Definability
- 5. η -Reduction
- 6. Normalization Theorem
- 7. Test Practice
- 8. Summary

Important Concepts

- $ightharpoonup \alpha$ -conversion
- \triangleright β -conversion
- \triangleright β -reduction
- Church–Rosser theorem

- $ightharpoonup \eta$ -reduction
- ► lambda calculus
- $ightharpoonup \lambda$ -definability
- normalization theorem

homework for January 22