
Better Matrix Multiplication Through Deep Reinforcement

Learning

Frederik Hirsch

January 2024

Abstract

DeepMind ’s deep reinforcement learning (DRL) agent AlphaTensor aims at finding lower-
rank matrix multiplication algorithms through formulating and playing tensor decomposition
as a single-player game. AlphaTensor succeeded in finding new matrix multiplications algo-
rithms that improved or matched current best known algorithms for smaller matrices up to
sizes of 5× 5. Experiments showed that it can also be utilized to optimize other properties of
matrix multiplication. This report aims at giving the reader the background knowledge to un-
derstand how tensor decomposition works, as well as providing an introduction and overview
of the DRL agent AlphaTensor.

1 Introduction

Matrix multiplication is one of the most important operations in computer science today. Machine
learning, graphical applications and many more tasks of modern computers rely heavily on matrix
multiplication as one of their fundamental building blocks [3]. Therefore it is of great interest to
optimize it as much as possible, because every tiny improvement can result in large computational
savings when it is performed millions of times a second.

At first it might seem that such a seemingly simple and well defined operation as matrix
multiplication is something that should be understood well enough to find an optimal algorithm
for computing it. The problem lies in finding a way to reduce the number of multiplications
needed in the algorithm, also called rank. While the standard matrix multiplication algorithm
always needs n3 multiplications for multiplying two n×n matrices with each other, there are ways
to do this with less as first discovered by Volker Strassen in 1969 [8]. He proposed an algorithm
that multiplies two 2×2 matrices with just 7 multiplications, which was soon proven the minimum
number of multiplications needed for 2× 2 matrices [10].

Since then, finding more efficient matrix multiplication algorithms has been an ongoing field of
research, but even for matrices as small 3× 3 the minimum number of multiplications isn’t known
to this day [2]. Until now most research has been done by human search involving the solving of
large equation systems [5], combinatorial approaches using SAT Solvers [4] or combining known
algorithms for smaller matrices to improve the rank of matrix multiplication for larger matrices
[6].

Googles subsidiary DeepMind brings a new approach to this field with AlphaTensor, which
is based on AlphaZero, a deep reinforcement learning (DRL) agent that achieved superhuman
performance in the games of Go, chess and shogi [7]. AlphaTensor uses DRL to find new matrix
multiplication algorithms which use less multiplications. It does so by turning the search for new
algorithms into a game, which can then be played by the agent in a similar way to the above
mentioned games. This approach relies less on human guidance and is therefore expected to find
more optimal solutions with less human bias [2].

But before taking a closer look at AlphaTensor itself, we first need to understand how a matrix
multiplication algorithm can be formalized such that a computer can deal with it better. This will
be explained in section 2. How this can be turned into a game, and how AlphaTensor can solve
this game is explained in section 3. Finally, the results of AlphaTensor will be presented in section
4.

1



2 Formalizing Matrix Multiplication Algorithms

Preliminaries:

1. This section contains some definitions and examples involving matrices. For better read-
ability, we refer to entries of the matrices not via 2 different indices (row, column) as it is
normally done, but by only 1 index enumerating every entry row by row. For example, we
refer to entries of a 2× 2 matrix A the following way:

A =

(
a1 a2
a3 a4

)
2. For better understanding of the examples given, it is also helpful to have the standard matrix

multiplication algorithm in mind, especially for multiplying 2× 2 matrices C = AB:

c1 = a1b1 + a2b3 c2 = a1b2 + a2b4

c3 = a3b1 + a4b3 c4 = a3b2 + a4b4

3. The outer product u⊗ v, where u and v are vectors of length m and n is defined as:

u⊗ v :=


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

. . .
...

umv1 umv2 . . . umvn


Later on, the 3-dimensional version of the outer product u⊗v⊗w is used, with an additional
vector w of length p. In that case, the result is a tensor (2.1), where p matrices are layered
behind one another, and the matrix in layer k is defined as wk · [u⊗ v].

2.1 Matrix Multiplication as a Tensor

To understand how AlphaTensor finds new ways to multiply matrices, we first need to understand
what tensors are and how matrix multiplication relates to them. A tensor can be defined as a
multidimensional array of numbers. For example, a vector is a tensor of dimension 1 and a matrix
is a tensor of dimension 2.

Because matrix multiplication is a bilinear function (a function that is linear in both of its argu-
ments) between vector spaces, it can be represented as a 3 dimensional tensor, similarly to how any
linear function between vector spaces can be represented as a matrix[2]. The size of this tensor is
dependent on the size of the matrices that are multiplied. For matrix multiplication with square ma-
trices of size n, the matrix multiplication tensor Tn has dimension (n2, n2, n2). This is because the
vector spaceMn×n consisting of the square matrices of size n has dimension n2, and matrix multi-
plication (fn) in this vector space has type fn :Mn×n ×Mn×n →Mn×n. More general, for matrix
multiplication of m×n and n×p matrices, the function has type fm,n,p :Mm×n ×Mn×p →Mm×p,
therefore Tm,n,p has dimension (m× n, n× p,m× p) [2].

The values of T are independent of the specific matrices that are multiplied, as they just define
which entries of matrix A to multiply with which entries of matrix B to get matrix C = AB. To
be more specific, the function fm,n,p is given by Tm,n,p through the following definition, where ti,j,k
refers to the entry of Tm,n,p in row i, column j and layer k:

fm,n,p :Mm×n ×Mn×p →Mm×p

(A,B) 7→ C, with ck =
∑

1≤i≤m·n
1≤j≤n·p

ti,j,k · ai · bj

This means that the entries of T must always be 0 or 1, depending on whether the product
ai · bj is needed for the calculation of ck. For a better understanding of how matrix multiplication
tensors look, T2 is shown in figure 1.

2



0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0
c1

c2

c3

c4

a4

a3

a2

a1

b4b3b2b1

Figure 1: Tensor T2 for multiplication of square matrices of size 2. [2]

2.2 Tensor Decomposition

Having matrix multiplication as a tensor alone doesn’t directly yield a faster way to multiply
matrices. For that, we need to look at decompositions of that tensor. In general, a decomposition
of a tensor is a series of elementary operations, such as addition and multiplication, on a set of
(mostly simpler) tensors, that result in the original tensor.

In our case, we are searching for a decomposition into a sum of rank-one tensors, where the
number of rank-one tensors is as small as possible. A rank-one tensor is a tensor which can be
expressed as an outer product of vectors: Xrank-one = u ⊗ v ⊗ w. A decomposition of a matrix
multiplication tensor Tn into R rank-one terms can then be defined as

Tn =

R∑
r=1

u(r) ⊗ v(r) ⊗ w(r)

where u(r), v(r) and w(r) are all vectors of length n2 [2]. When a decomposition consists of R
rank-one terms, it has rank R.

Each rank-one term of a decomposition corresponds to one multiplication in the matrix multipli-

cation algorithm. For example, the rank-one term defined by u = (0, 1, 0, 1)T , v = (1, 0,−1, 0)T

and w = (1, 1, 0, 0)T denotes that the term (a2 + a4) · (b1 − b3) is used for the calculation of

c1 and c2 . For square matrices of size 2, the standard way of multiplying matrices is a tensor
decomposition with 8 rank-one terms, as there are 8 different product terms used.

One of the most popular multiplication algorithms that improves on the number of terms is
the Strassen-Algorithm [8] which only uses 7 terms for multiplying 2 × 2 matrices. It can also
be utilised for multiplying larger matrices by recursive application of the same algorithm. The
decomposition of the Strassen-Algorithm is shown in figure 2.

m1 = (a1 + a4) · (b1 + b4)

m2 = (a3 + a4) · b1

m3 = a1 · (b2 − b4)

m4 = a4 · (b3 − b1)

m5 = (a1 + a2) · b4

m6 = (a3 − a1) · (b1 + b2)

m7 = (a2 − a4) · (b3 + b4)

c1 = m1 + m4 −m5 + m7

c2 = m3 + m5

c3 = m2 + m4

c4 = m1 −m2 + m3 + m6

Figure 2: Strassen Algorithm for multiplying 2× 2 matrices. [8]

3



3 Finding New Tensor Decompositions

For reinforcement learning (RL), two main components are needed: an environment and an agent
that interacts with the environment. How these two work for finding new matrix multiplications
is explained in the following two sections.

3.1 Tensor Decomposition as a Game

To be able to apply RL to the problem, we need to turn tensor decomposition into a game with
different states, actions that transform states into other states, as well as an end goal. DeepMind
called this TensorGame [2], and it works as follows:

• Game State: The state of the game at each step t is defined by a tensor St. At the beginning
of the game, S0 is set to Tm,n,p, the tensor that is to be decomposed. The game state tensor
always has the dimensions of the tensor that is decomposed in the game.

• Actions: An action at each step t is defined by three vectors u(t), v(t) and w(t), which the
player chooses. The new game state is then calculated by subtracting the resulting rank-one
tensor from the previous game state: St ← S.t− 1−u(t)⊗v(t)⊗w(t). The scalar entries of u,
v and w are limited to a discrete set of values such as {−2,−1, 0, 1, 2}, because using floating
point numbers would in practice lead to inaccurate algorithms due to the finite precision of
floating point arithmetic.

• Goal: The goal of the game is to reach the zero tensor St = 0, where all entries are zero.
When adding up all the actions leading to the zero tensor, we then get Tm,n,p =

∑t
i=1 u

(i) ⊗
v(i) ⊗ w(i), which means that we have found a valid decomposition. The number of steps in
the game can be limited to an already known upper bound of the rank of Tm,n,p (Rlimit),
because reaching the goal in more steps would only result in a decomposition with more
terms.

• Reward Function: To guide the RL agent in finding a decomposition with a rank as low as
possible, the reward function gives a negative reward of −1 with each step taken, as well as
an additional reward −γ(SRlimit

) at the end of the game, where γ(SRlimit
) is an upper bound

of the rank of the tensor SRlimit
that is left when the step limit is reached. This means that

when the zero tensor is reached at the end of the game, the additional reward is 0.

3.2 Exploring TensorGame with Reinforcement Learning

Additionally to the environment (which is given by TensorGame), the other key part of RL is the
agent that interacts with the environment and develops a policy π (a function that returns the
optimal actions based on the given state) based on the rewards it gets from the environment [1].

The biggest challenge for the agent that interacts with TensorGame is the extremely large
action space. While in games like Chess and Go there are up to a few 100 actions that can be
taken in each state, the size of the action space for TensorGame is over 1012 in most relevant cases
[2]. For example, when decomposing T3, the agent needs to choose 3 vectors of length 9, with
5 possibilities (3.1) for each entry of the vectors. This results in 53·9 > 1018 different actions to
choose from.

To stand up to this challenge, DeepMind proposes their DRL agent AlphaTensor, which is based
on AlphaZero, a more generalized successor of their superhuman Go-program AlphaGo. Explaining
the full architecture would be beyond the scope of this paper, so I will just give a short informal
overview and explain some interesting techniques used for training the agent. For a more detailed
and precise explanation of AlphaTensor and the machine learning principles behind it, I refer to
the following papers: [2, 7, 9].

The main component of AlphaTensor is a transformer based [9] deep neural network, which
produces a policy π as well as a value function z (a probability distribution over the sums of the
future rewards) from the current state St and previous states of the game [2]. These two functions
are the critical part in finding the best action to take in a given state. The agent uses Monte Carlo
tree search (MCTS) to find the best path in the search tree, where nodes represent different states
of the game (with the current state as root node) and edges actions that can be taken from each
state. MCTS is a sample based algorithm, which uses the policy π to sample different actions that
lead to high value states (determined by z). When the end of a game is reached on a path, the
result is used to train the deep neural network, so that it can put out more accurate policies and
value functions in the future [2].

4



The neural network of AlphaTensor is trained on pairs of tensors, and their decompositions. To
achieve better results, multiple different techniques are used to generate additional training data
from the self played games as well as synthetic data from scratch:

• Synthetic training data: While it is computationally very difficult to find decompositions
for a given tensor, it is very easy to build a tensor from any given decomposition. To generate
pairs of tensors and their decompositions from scratch, multiple pairs of vectors u, v and w are
sampled which represent the decomposition, which are then multiplied and added together
to get the tensor. Theses pairs can then be used as training data for the neural network [2].

• Change of basis: So far we only looked at the matrix multiplication tensor in the canonical
basis. The rank of a tensor is actually independent of the basis used, and any decomposition
found for a tensor in a different basis can easily be transformed back into the canonical basis.
That means that any found decomposition can be transformed to a different basis to receive
a new (tensor, decompositon) pair to train the neural network. Additionally, a tensor can be
transformed to multiple different bases, to search for decompositions in all of them [2].

• Permutations of decompositions: As the different terms of the decomposition are just
added up, the order of them doesn’t matter for the result. Because of this, it is possible to
just change the order in found decompositions to receive a new training pair [2].

All these components together, namely MCTS combined with a powerful deep neural network
trained on self-played and synthetic data allow AlphaTensor to handle the extremely large action
space of tensor decomposition.

4 Results

A single AlphaTensor agent was trained to find algorithms for multiplication of matrices of sizes
m×n with n×p, where 2 ≤ m,n, p ≤ 5. For all of these sizes it found decompositions which either
have the same rank as the previous best known decompositions, or improved the rank [2]. It not
only searched for multiplication algorithms for matrices over R, but also for algorithms in modular
arithmetic, namely for matrices over the quotient ring Z2 (which means that the matrices can only
have entries 0 and 1). The improvements AlphaTensor made over the previous best known ranks
is shown in figure 3.

Size Best rank known AlphaTensor rank (Z2) AlphaTensor rank (R)
(m,n, p)

(4, 4, 4) 49 47 49
(5, 5, 5) 98 96 98

(3, 4, 5) 48 47 47
(4, 4, 5) 64 63 63
(4, 5, 5) 80 76 76

Figure 3: Comparison of the best known rank for matrix multiplication before Al-
phaTensor (column 2) and the best rank found by AlphaTensor for modular arith-
metic (column 3) and standard arithmetic (column 4). Sizes are chosen to only
show the ones where AlphaTensor found an improved rank. For all other sizes up to
(5, 5, 5) it matched the rank, but didn’t improve upon it. This table is a shortened
version of Fig. 3 in the AlphaTensor paper [2].

Despite only directly searching for algorithms up to matrix size 5, 5, 5, AlphaTensor also im-
proved the best rank for many larger matrix multiplications with n,m, p ≤ 12 by combining known
algorithms for smaller matrices recursively. For example, the rank for multiplying matrices (6, 8, 10)
has been improved from 336 = 7 · 48 to 329 = 7 · 47, by combining the algorithms for (3, 4, 5) (rank
47, improved from 48) and (2, 2, 2) (rank 7) [2]. For a table containing every rank improved via
factorization see Extended Data Table 1 in the AlphaTensor paper [2].

The only thing defining that AlphaTensor searches for decompositions with the lowest rank
possible is the reward function. By changing the reward function, it can optimise other properties
such as practical efficiency on specific hardware. DeepMind used AlphaTensor to optimize the
multiplication of 8192×8192 square matrices on the Nvidia V100 GPU as well as their own Tensor

5



Processing Unit (TPU) by searching for the 4×4 algorithm which results in the fastest benchmark
when combined with the already very efficient implementation for 2048× 2048 multiplication. For
that, they added a benchmark ran on the specific hardware to the reward function whenever a
valid solution was found. The agent doesn’t need to know anything about the architecture of the
hardware, but just sees it as a blackbox that it gets a benchmark score from. For the Nvidia V100
GPU DeepMind reported a speed-up of 8.5% using AlphaTensor, compared to a speed-up of 4.3%
using the recursive Strassen algorithm for 4× 4 multiplication. The speed-ups are both measured
relative to the same standard. For the TPU they reported speed-ups of 10.3% with AlphaTensr
and 6.6% with the Strassen method [2].

These results show that DRL is useful for helping to solve complex mathematical problems, as
well as bridging the gap between theoretical optimization of an algorithm and a practical improve-
ment in performance [3]. DeepMind is confident that the flexibility given by AlphaTensor can be
utilized to find algorithms optimizing other metrics such as numerical stability or energy usage [2].

References

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
“Deep Reinforcement Learning: A Brief Survey”. In: IEEE Signal Processing Magazine 34.6
(2017), pp. 26–38.

[2] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes,
Mohammadamin Barekatain, Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser,
Grzegorz Swirszcz, et al. “Discovering faster matrix multiplication algorithms with reinforce-
ment learning”. In: Nature 610.7930 (2022), pp. 47–53.

[3] Samuel Greengard. “Better Algorithms through Faster Math”. In: Communications of the
ACM 66.6 (2023), pp. 11–13.

[4] Marijn J.H. Heule, Manuel Kauers, and Martina Seidl. “New ways to multiply 3×3-matrices”.
In: Journal of Symbolic Computation 104 (2021), pp. 899–916.

[5] Julian D. Laderman. “A noncommutative algorithm for multiplying 3 x 3 matrices using 23
multiplications”. In: Bulletin of the American Mathematical Society 66.1 (1976), pp. 126–
128.

[6] Alexandre Sedoglavic and Alexey V. Smirnov. “The Tensor Rank of 5x5 Matrices Multi-
plication is Bounded by 98 and its Border Rank by 89”. In: Proceedings of the 2021 on
International Symposium on Symbolic and Algebraic Computation. ISSAC ’21. Association
for Computing Machinery, 2021, pp. 345–351.

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play”. In: Science 362.6419 (2018), pp. 1140–1144.

[8] Volker Strassen et al. “Gaussian elimination is not optimal”. In: Numerische mathematik
13.4 (1969), pp. 354–356.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

[10] S. Winograd. “On multiplication of 2 × 2 matrices”. In: Linear Algebra and its Applications
4.4 (1971), pp. 381–388.

6


	Introduction
	Formalizing Matrix Multiplication Algorithms
	Matrix Multiplication as a Tensor
	Tensor Decomposition

	Finding New Tensor Decompositions
	Tensor Decomposition as a Game
	Exploring TensorGame with Reinforcement Learning

	Results

