



# Introduction to Scientific Working

### **Cezary Kaliszyk**



# Summary of last proseminar

#### Kinds of texts (at least)

- Seminar work
   10–20 pages; Summary of existing scientific work
- Bachelor thesis
   15–30 pages; No claim about originality, but summarized achieved results
- Master thesis
   60–100 pages; Summary, explanation, and implementation of existing scientific work

### Structure a paper

**Table of contents** 

\tableofcontents

Introduction

Motivation and short form of the work

Main part, core

Description and discussion of various topics

#### Conclusion

Summary of the considered topics and their relation to the motivation

#### References

\bibliographystyle{plain}
\bibliography{references}



## Introduction

Short summary and motivation

- Be very precise in the introduction
- The reader needs to have an idea what topics will be covered
- The introduction ends with a detailed content of the work
- To be written at the end
- (Same for the summary / conclusion)

### Example

This document gives some hints on how to structure and organize a thesis. It does not contain explicit help on  $\&T_EX$ . For that issue please refer to a short introduction in German [2] or a not so short introduction in English [1]. To ensure a uniform layout this note further fixes some conventions when typesetting in  $\&T_EX$  and lists some useful packages.

Main part

Description and analysis of a topic

#### Structuring

- Divide the work into chapters, sections, subsections, so that each describes a logical part of the work
- Begin sections with a single sentence that introduces that part
- Avoid too long/short chapters

#### Formatting

innsbruck

- Words capitalized in titles also in English
- Use special environments for listings, tables, graphics, ... .

## Conclusion

Repeat the topic and analyse it again with respect to the motivation

- Summary of the results
- Compare the results with the motivation given in the introduction
- Mention what is your work again
- Possibly discuss potential future work and related works
- The conclusion should be written last

### Example

This note gives a comprehensive guide for computational logic students on how to organize their scientific documents. In order to get started with  $\[mathbb{E}T_EX$  some useful packages are mentioned.

### Literature

T. Oetiker, H. Partl, I. Hyna, and E. Schlegl.
 The not so short introduction to LaTeX, 2007.
 ctan.org/tex-archive/info/lshort/english.

W. Schmidt, J. Knappen, H. Partl, and I. Hyna. LaTeX-Kurzbeschreibung, 2003.

ctan.org/tex-archive/info/german/LaTeX2e-Kurzbeschreibung.

#### **Paper structure**

- Introduction
- Core
- Conclusion

### Formatting

- LATEX takes care of most formatting
- Figures and tables require captions and references
- Headlines capitalized
- Use dedicated environments for listings, tables, graphics, etc.

# Dedicated environments for (program) listings

```
class HelloWorld:
    def name(self, name):
        return name
```

```
h = HelloWorld()
print(h.__class_.__name__)
```

Figure: Hello program in Python.

#### Example

Figure presents a "hello world" program in Python (often with references)



# Checklist for the final document

#### Tasks

### Use a spell-checker

Correct words in wrong places cannot be recognized

- Line breaks and page breaks Modify manually only in case of serious issues
- 3 Overfull lines draft mode
- Consistency of references
   "Proc. of the 7th International conference ...." versus
   "8th Conference on ..." versus
   "Proceedings of the sixth ..."
   (names, numbers, abbreviations, ...)
- 5 Read through the complete document

### Homework / Work here

- Read chapters 1-3 of "Not so short introduction to LTEX" https://tobi.oetiker.ch/lshort/lshort.pdf
- Prepare a minimal \mathbb{M}\_EX document that includes an itemization, a table, a figure, a mathematical formula, and bibtex bibliography.