
VO Functional Programming
LVA 703024

Exam 1
Version A

February 9, 2024

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Program Analysis Including Modules and I/O 20

Programming with Lists 32

Datatypes and Higher-Order Functions 26

Evaluation and Types 12∑
90

• You have 90 minutes to solve the exercises.

• The exam consists of 4 exercises, for a total of 90 points (so there is 1 point per minute).

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

• Textual answers can be formulated in either English or German.

page 1 of 8



VO Functional Programming Exam 1 – A February 9, 2024

Exercise 1: Program Analysis Including Modules and I/O 20
Consider the following program. It chooses a random non-negative number and then asks the user to guess
it.

1 module Main(main, finalize) where

2
3 import System.Random(randomIO) -- randomIO :: IO Integer

4
5 main = do

6 num <- randomIO

7 putStrLn "Try to guess my number"

8 guessingGame (abs num) 1

9
10 guessingGame :: Integer -> Integer -> IO String

11 guessingGame num n = do

12 str <- getLine

13 x <- (read str :: Integer)

14 let reason = if x < num then "small" else "large"

15 if x == num then finish n

16 else do

17 putStrLn $ "Your guess was too " ++ reason ++ ". Try again"

18 guessingGame num n + 1

19
20 finish n = putStrLn $ "You guessed my number using " ++ show n ++ " tries"

This program contains four mistakes that cause compilation errors.

• Identify these mistakes by providing line numbers,

• briefly explain the problem of each mistake, and

• explain how to correct the mistakes.

Note that all four mistakes are independent of one another.

(a) (5)Mistake #1

Solution: Line 1, finalize cannot be exported as it is not defined in this program. Either remove
finalize or rename it to finish.

page 2 of 8



VO Functional Programming Exam 1 – A February 9, 2024

(b) (5)Mistake #2

Solution: Line 10, the type of guessingGame is wrong, it must be Integer -> Integer -> IO ().

(c) (5)Mistake #3

Solution: Line 13, read is not a monadic operation, hence x <- read str must be replaced by
let x = read str

(d) (5)Mistake #4

Solution: Line 18, the expression is parsed as (guessingGame num n) + 1, but it should have
been guessingGame num (n + 1), so parentheses or a $ are required.

page 3 of 8



VO Functional Programming Exam 1 – A February 9, 2024

Exercise 2: Programming with Lists 32
Periodic functions can be represented by a list of initial values vs = [v_1,...,v_k] and a non-empty list
of values ws = [w_1,...,w_m] that is repeated over and over again.

The function periodic :: [a] -> [a] -> Int -> a is then defined as follows: periodic vs ws n is the
n-th element of the infinite list [v_1,...,v_k,w_1,...,w_m,w_1,...,w_m,w_1,...,w_m, ...] for every
non-negative integer n. For example, if f = periodic [4,2] [5,1,3] then the results of evaluating f for
arguments 0, . . . , 8 are shown in the following table:

f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 . . .
4 2 5 1 3 5 1 3 5 . . .

Your task is to develop different (equivalent) implementations of periodic. You may freely use all Prelude
functions. In particular, take, drop, splitAt, (!!), (++), filter, map and lookup might be useful.

(a) (6)Define a function infList for the infinite list described above, i.e., infList vs ws should evaluate
to [v_1,...,v_k,w_1,...,w_m,w_1,...,w_m, ...], and provide the most general type of infList.
Further define a function periodicInf as an implementation of periodic that is based on infList.

(b) (6)Define a function periodicN that implements periodic without constructing an infinite list and without
using any predefined functions on lists (except for the list constructors). Evaluating periodicN vs ws n

should require approximately n steps.

(c) (8)Define a function periodicFast :: [a] -> [a] -> Int -> a as an implementation of periodic. You
should make use of the periodicity so that evaluating periodicFast vs ws n does not need many more
than length vs + length ws steps, even if n is very large.

Hint: Haskell contains functions div and mod to compute the quotient and the remainder of an integer
division respectively.

(d) (12)Assume that a function g :: Int -> a is periodic, i.e. there exists a finite list vs and a non-empty
finite list ws such that g = periodic vs ws. Assume also that the list vs ++ ws is distinct, i.e., it
contains no duplicates.

Define a function getLists :: Eq a => (Int -> a) -> ([a], [a]) such that getLists g recon-
structs vs and ws from g. In particular getLists (periodic vs ws) == (vs, ws) should be satisfied
whenever vs and ws are two finite lists such that vs ++ ws is distinct and ws is non-empty.

Remark: you can get half of the points for this part if you instead implement an easier function
getListSimple :: Eq a => (Int -> a) -> [a]. Here we assume that the input is a periodic func-
tion g = periodic [] ws and only ws is computed via getListSimple. In particular, the property
getListSimple (periodic [] ws) == ws should be satisfied whenever ws is a finite, non-empty and
distinct list.

page 4 of 8



VO Functional Programming Exam 1 – A February 9, 2024

Solution:

infList :: [a] -> [a] -> [a]

infList vs ws = vs ++ infList ws ws

periodicInf vs ws n = infList vs ws !! n

periodicN (x : _) _ 0 = x

periodicN (_ : vs) ws n = periodicN vs ws (n - 1)

periodicN [] ws n = periodicN ws ws n

periodicFast vs ws n

| n < lvs = vs !! n

| otherwise = ws !! ((n - lvs) `mod` length ws)

where lvs = length vs

getListSimple :: Eq a => (Int -> a) -> [a]

getListSimple g = g 0 : takeWhile (/= g 0) (map g [1..])

-- solution based on lookup / take / splitAt

getLists :: Eq a => (Int -> a) -> ([a], [a])

getLists g = search 1 where

gis = map (\ i -> (f i, i)) [0..]

search n = case lookup (g n) (take (n - 1) gis) of

Just i -> let (vs, long) = splitAt i (map fst gis)

in (vs, take (n - i) long)

Nothing -> search (n + 1)

-- solution based on elem / take / span / filter

getLists :: Eq a => (Int -> a) -> ([a], [a])

getLists g = let

xs = map g [0..]

duplIndex = head (filter (\ i -> g i `elem` take i xs) [0..])

vsWs = take duplIndex xs

in span (/= g duplIndex) vsWs

page 5 of 8



VO Functional Programming Exam 1 – A February 9, 2024

Exercise 3: Datatypes and Higher-Order Functions 26
Consider the following program.

import Data.List(sort, sortOn)

-- sort :: Ord a => [a] -> [a]

-- sortOn :: Ord b => (a -> b) -> [a] -> [a]

-- sortOn f xs provides a sorted list ys of xs,

-- such that f (ys !! (i - 1)) <= f (ys !! i) for all 1 <= i < length ys;

-- sort and sortOn are closely related: sort = sortOn id

import Data.Char(toUpper)

-- toUpper :: Char -> Char

type Name = [String] -- a name might be composed, e.g., John Paul van de Boes

data Employee = Empl

Name

Int -- age

Float -- salary

nameOf (Empl name _ _) = name

mapEmp f g h (Empl name age salary) = Empl (f name) (g age) (h salary)

(a) (4)Write down the most general types of nameOf and of mapEmp.

Solution:
nameOf :: Employee -> Name

mapEmp ::

(Name -> Name) ->

(Int -> Int) ->

(Float -> Float) ->

(Employee -> Employee)

(b) (4)Assume we want to write a function raiseSalary :: Employee -> Employee where the new salary is
computed by the formula

new-salary = old-salary + age× 10

Further assume our implementation uses the following structure.

raiseSalary = mapEmp undefined undefined undefined

Either replace each undefined by a suitable λ-expression, or argue why raiseSalary cannot be imple-
mented via mapEmp.

Solution: It cannot be implemented via mapEmp, since the new salary depends on the age and the
old salary. However, in mapEmp the new salary is computed by a function that only gets the old
salary as input.

page 6 of 8



VO Functional Programming Exam 1 – A February 9, 2024

(c) (4)Assume we want to define a function toUpperEmployees :: [Employee] -> [Employee] that changes
all names of all employees in a list so that they are written with uppercase letters. Choose a suitable
implementation (4 points for the correct solution, 1 point for making no choice, 0 points for marking a
wrong solution)

□ toUpperEmployees = toUpper

□ toUpperEmployees = map (mapEmp (map toUpper))

■ toUpperEmployees = map (mapEmp (map (map toUpper)) id id)

□ toUpperEmployees = map (mapEmp (map toUpper) id id)

(d) (14)Assume we want to define a function sortedUppercaseNames :: [Employee] -> [Name] that returns
a sorted list of the names of all employees in a list converted to uppercase. The sorting should also be
done using the uppercase names. There are four different attempts to implement sortedUppercaseNames
(sun for brevity).

sun1 = map nameOf . sort . toUpperEmployees

sun2 = sort . toUpperEmployees . map nameOf

sun3 = map nameOf . sortOn nameOf . toUpperEmployees

sun4 = map nameOf . sortOn (nameOf . toUpperEmployees)

For each of the functions sun1, sun2, sun3 and sun4, indicate whether they are correct implementations
of sortedUppercaseNames or not; and for the incorrect ones, give a brief description of the problem.

Solution:

• sun1 does not compile, since Employee does not instantiate Ord.

• sun2 does not compile, since map nameOf produces a list of names, but toUpperEmployees
expects a list of employees as input.

• sun3 is correct.

• sun4 does not compile for several reasons. For instance, toUpperEmployees requires a list
of employees as input, but sortOn will invoke this function on singleton employees; or the
result of toUpperEmployees, a list of employees, is passed to nameOf, which expects a singleton
employee. Moreover, even if it compiled, the final result would not be in uppercase, as sortOn
produces a permutation of the input list.

page 7 of 8



VO Functional Programming Exam 1 – A February 9, 2024

Exercise 4: Evaluation and Types 12
In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth
4 points, giving no answer counts 1 point, and marking multiple or a wrong statement results in 0 points.

Consider the following program.

foo n = bar 0 1 n

bar x y n

| n == 0 = x

| otherwise = bar y (x + y) (n - 1)

(a) (4)What is the most general type of foo?

□ foo :: Int -> Int

□ foo :: (Eq a, Num a) => a -> a

■ foo :: (Eq a, Num a, Num b) => a -> b

□ foo :: (Eq a, Num a, Eq b, Num b) => a -> b

(b) (4)What is the result of invoking foo n for some positive natural number n?

□ 0 + 1 + 2 + ... + n

□ n * n

■ The n-th element of the list of Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

□ None of the above

(c) (4)Assume that we evaluate foo n :: Int for some positive n :: Int.

Choose the correct statement.

□ The memory consumption is constant for both innermost evaluation and lazy evaluation.

□ The memory consumption grows linearly in n for both innermost evaluation and lazy evalua-
tion.

□ The memory consumption grows linearly in n when using innermost evaluation, but is constant
when using lazy evaluation.

■ The memory consumption is constant when using innermost evaluation, but grows
linearly in n when using lazy evaluation.

page 8 of 8


