
VO Functional Programming
LVA 703024

Exam 2
Version B

March 22, 2024

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Program Analysis Including Modules and I/O 20

Programming with Lists 32

Datatypes and Higher-Order Functions 26

Evaluation and Types 12∑
90

• You have 90 minutes to solve the exercises.

• The exam consists of 4 exercises, for a total of 90 points (so there is 1 point per minute).

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

• Textual answers can be formulated in either English or German.

page 1 of 8

VO Functional Programming Exam 2 – B March 22, 2024

Exercise 1: Program Analysis Including Modules and I/O 20
Consider the following program.

1 import qualified Text.Read

2
3 data Expr = Div Expr Expr | Num Double deriving Read

4
5 eval :: Expr -> Double

6 eval (Num x) = x

7 eval e@(Div e1 e2) = let

8 x1 = eval e1

9 x2 = eval e2

10 in if x2 /= 0

11 then x1 / x2

12 else error $ "div-by-0 error in expression " ++ show e

13
14 main :: IO ()

15 main = do

16 putStrLn "enter expression:"

17 s <- getLine

18 case readEither s of

19 Left errorMessage -> do

20 putStrLn $ "error in input: " ++ errorMessage

21 main

22 Just expr -> do

23 result <- eval expr

24 putStrLn $ "the result is " ++ show result

This program contains four mistakes that cause compilation errors.

• Identify these mistakes by providing line numbers,

• briefly explain the problem of each mistake, and

• explain how to correct the mistakes.

Note that all four mistakes are independent of one another.
Further note that readEither :: Read a => String -> Either String a is exported by module Text.Read
where data Either a b = Left a | Right b.

(a) (5)Mistake #1

page 2 of 8

VO Functional Programming Exam 2 – B March 22, 2024

(b) (5)Mistake #2

(c) (5)Mistake #3

(d) (5)Mistake #4

page 3 of 8

VO Functional Programming Exam 2 – B March 22, 2024

Exercise 2: Programming with Lists 32
A word w is a palindrome, if reading w from right-to-left is the same as reading w from left-to-right. For
instance, the words ”hannah”, ”refer”, and ”a” are palindromes, whereas ”paul” and ”valid” are not.

A palindrome can be generalized to arbitrary lists, e.g., also [1, 2, 7, 2, 1] is a palindrome, whereas [1, 8, 9, 1]
is not.

For the upcoming programming tasks except task (b) you may use arbitrary Prelude functions, e.g., functions
such as map, length, take, drop, words, unwords, [i .. j], and so on.

(a) (4)Define a Haskell-function palindrome that determines whether a given list is a palindrome. Also specify
a type for palindrome that should be as general as possible.

Examples:

• palindrome "kayak" && palindrome "" && palindrome [1,2,7,2,1] should evaluate to True

• palindrome "paul" || palindrome [1,2] should evaluate to False

(b) (8)Define a function partition :: (a -> Bool) -> [a] -> ([a], [a]) with the following behavior.
Whenever partition p xs = (ys, zs), then ys contains those elements of xs that satisfy predicate p,
and zs contains the other elements of xs.
For example, partition (> 5) [4,10,7,3,2] == ([10,7], [4,3,2]).

For task (b) it is not allowed to use any predefined functions on lists, except for the list constructors!

(c) (8)Define a Haskell-function specialSentence :: String -> Bool that determines whether a sentence
is special, i.e., whether at least half of the words in the sentence are palindromes.

• the input is a sentence that is represented as a Haskell String, and the words within the sentence
are separated by blanks

• each occurrence of a word is counted separately, i.e., "a bob is a fast vehicle" is a sentence
that consists of 6 words, and it is special as it contains (at least) 3 palindromes "a", "bob" and "a"

• "malayalam is a nice language" is not a special sentence, as it only contains 2 palindromes but
consists of 5 words

Remark: You may of course use palindrome and partition, even if you did not solve those parts.

(d) (12)Define a Haskell-function subPalindromes such that subPalindromes xs is a list of all non-trivial
palindromes that occur as sublists of xs.

• a non-trivial palindrome has a length of at least 4

• a sublist of xs is obtained by dropping arbitrary many elements at the front and at the rear of xs

Example: subPalindromes "hello to otto and hannah" should evaluate to a list that contains ex-
actly the strings "to ot", " otto ", "otto", "hannah" and "anna" (in any order).

Hint: list-comprehensions might be useful.

page 4 of 8

VO Functional Programming Exam 2 – B March 22, 2024

page 5 of 8

VO Functional Programming Exam 2 – B March 22, 2024

Exercise 3: Datatypes and Higher-Order Functions 26
Consider the following program.

import Data.List(nub, sort)

-- nub :: Eq a => [a] -> [a]

-- "nub" removes all duplicates from the given list

-- sort :: Ord a => [a] -> [a]

-- sum :: Num a => [a] -> a

-- "sum" computes the sum of all elements in a list of numbers

-- map :: (a -> b) -> [a] -> [b]

data Tree a = Tree a [Tree a]

node (Tree x _) = x

subtrees (Tree _ ts) = ts

mapTree f (Tree x ts) = Tree (f x) (map (mapTree f) ts)

foldTree f (Tree x ts) = f x (map (foldTree f) ts)

(a) (4)Write down the most general types of node, subtrees and mapTree.

(b) (4)Assume we want to define a function sumTrees :: [Tree Int] -> Int that computes the sum of all
nodes of a given list of integer-trees.

Example: sumTrees [Tree 1 [], Tree 3 [Tree 4 [], Tree 3 []]] = 1 + 3 + 4 + 3 = 11

Choose a suitable implementation (4 points for the correct solution, 1 point for making no choice, 0
points for marking a wrong solution)

□ sumTrees = sum . map node

□ sumTrees = sum . map (mapTree id)

□ sumTrees = sum . subtrees

□ sumTrees = sum . map (foldTree (\ x xs -> x + sum xs))

page 6 of 8

VO Functional Programming Exam 2 – B March 22, 2024

(c) (6)Assume we want to write a function totalSum :: Tree Int -> Tree Int, replacing each node in the
given integer-tree by the sum of all integers in the subtree starting at the node.

Example: totalSum (Tree 1 [Tree 2 [], Tree 3 [Tree 4 [], Tree 5 []]]) =

Tree 15 [Tree 2 [],Tree 12 [Tree 4 [],Tree 5 []]]

Further assume our implementation uses the following structure:

totalSum = foldTree undefined

Replace undefined by a suitable λ-expression or argue why totalSum cannot be implemented via
foldTree.

(d) (12)Assume we want to define a function set :: Ord a => Tree a -> [a] that computes, given a tree,
the sorted list of all nodes in the tree without duplicates (you might also say, a set-representation of
the tree content). Below are three different attempts to implement set:

set1 = sort . nub . mapTree id

set2 = nub . sort . foldTree (\x ts -> x : concat ts)

set3 = sort . nub . foldTree (\x -> concat)

For each of the functions set1, set2 and set3, indicate whether it is a correct implementation of set
or not; and for the incorrect ones, give a brief description of the problem.

page 7 of 8

VO Functional Programming Exam 2 – B March 22, 2024

Exercise 4: Evaluation and Types 12
In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth
4 points, giving no answer counts 1 point, and marking multiple or a wrong statement results in 0 points.

Consider the following program.

foo = bar 0

bar _ [] = []

bar x (y:ys) = x : bar (x + y) ys

(a) (4)What is the most general type of foo?

□ [Int] -> Int

□ [Int] -> [Int]

□ Num a => [a] -> [a]

□ [a] -> [a]

(b) (4)What is the result of invoking foo [1,2,3,4,5]?

□ [1,3,6,10,15]

□ [0,1,3,6,10]

□ 15

□ none of the above

(c) (4)Assume that we evaluate foo xs for some finite list xs :: [Int].

Which of the following statements is correct?

□ The memory consumption is constant for both innermost and lazy evaluation.

□ The memory consumption is constant when using lazy evaluation, but grows linearly in the
length of xs when using innermost evaluation.

□ The memory consumption is unbounded when using innermost evaluation, since the function
call leads to an infinite computation.

□ none of the above

page 8 of 8

