
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 3, 5 points Deadline: Tuesday, October 31, 2023, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can use a template .hs file that is provided on the proseminar page.

• Upload your modified .hs file in OLAT.

• Your .hs file must be compilable with ghci.

Exercise 1 Programming with Pattern Matching and Recursion 5 p.

In this exercise we will manipulate expressions in various ways. To this end we consider the datatype Expr

of expressions of Lecture 2. We additionally represent variable assignments i.e., mappings from variables to
numbers by type Assign.

data Expr = Variable String | Number Integer | Add Expr Expr | Negate Expr deriving Show

data Assign = Empty | Assign String Integer Assign deriving Show

For instance, exampleExpr represents −(x + (−(y + 3))), and exampleAssign corresponds to the assignment
{x 7→ 5, y 7→ 12} in the following code:

exampleExpr = Negate (Add (Variable "x") (Negate (Add (Variable "y") (Number 3))))

exampleAssign = Assign "x" 5 (Assign "y" 12 Empty)

For some of the following tasks the if-then-else function ite might be useful: given a Boolean and two arguments
x and y of the same type, it selects one of the arguments depending on the truth value of the Boolean.
ite True x y = x

ite False x y = y

1. Define a function value :: String -> Assign -> Integer that returns the value of a variable in an as-
signment. If a variable does not occur in the assignment, you can you indicate an error via error "message"

in Haskell. You may assume that assignments list each variable at most once. (1 point)

For example, value "x" exampleAssign results in 5, and value "z" exampleAssign results in an error.

2. Define a function eval :: Assign -> Expr -> Integer that evaluates an expression w.r.t. a given as-
signment. You may assume that all variables in the expression occur in the assignment, and that value is
available, even if you did not solve the first task. (1 point)

Example: eval exampleAssign exampleExpr results in −(5 + (−(12 + 3))), i.e., 10.

3. Define a function containsVar :: String -> Assign -> Bool that determines whether a variable oc-
curs in an assignment. (1 point)

Example: containsVar "x" exampleAssign results in True, whereas containsVar "z" exampleAssign

results in False.

4. Define a function substitute :: Assign -> Expr -> Expr that replaces all variables of the expression,
that also occur in the assignment by the corresponding value. You may assume that both containsVar

and value are available, even if you did not solve these tasks. (1 point)

Example: substitute exampleAssign exampleExpr results in the Haskell encoding of −(5+(−(12+3))),
whereas the result of substitute (Assign "x" 7 Empty) exampleExpr represents −(7 + (−(y + 3))).

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/02x1.pdf#page=23

5. We want to normalize expressions by moving negations inside the expression as far as possible. We say
that an expression e is normalized if the negations only occur in front of variables or numbers. In Haskell
this means that whenever Negate e1 is a subexpression of e, then e1 is of the form Variable x. Note that
if e1 represents a number, then one can eliminate the Negate constructor by just negating the number.

Define a function normalize :: Expr -> Expr that computes a normalized expression. (1 point)

Example: normalize exampleExpr results in the Haskell encoding of −x+ (y + 3).

