
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 4, 5 points Deadline: Tuesday, November 7, 2023, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can use a template .hs file that is provided on the proseminar page.

• Upload your modified .hs file in OLAT.

• Your .hs file must be compilable with ghci.

Exercise 1 Polymorphism and Trees 5 p.

In this exercise we will consider a type for representing binary trees. To this end we consider the datatype Tree
defined as

data Tree a = Node a (Tree a) (Tree a) | Leaf a

For instance, exampleTree represents the following tree:
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exampleTree = Node 1 (Leaf 2) (Node 3 (Node 4 (Leaf 5) (Leaf 6)) (Leaf 7))

1. Write a function height :: Tree a -> Integer that calculates the height of a binary tree. The height
is the number of edges on the longest path between the root and a leaf. (1 point)
Hint: the Haskell function max :: Ord a => a -> a -> a might be useful.

Examples:
height (Leaf 'a') == 0

height exampleTree == 3

2. Write a function flatten :: Tree a -> [a] which takes a tree as an argument and returns a list con-
taining exactly the elements in the tree from left to right. In particular, each node element should appear
in the list after the elements in its left subtree and before the elements in its right subtree. (1 point)
Hint: (++) :: [a] -> [a] -> [a] is Haskell’s predefined append-function for lists.

Examples:
flatten (Node 1 (Leaf 2) (Leaf 2)) == [2,1,2]

flatten exampleTree == [2,1,5,4,6,3,7]

3. A binary tree t is said to be a binary search tree if flatten t is a list whose elements appear in strictly
increasing order. Write a function isSearchTree:: Ord a => Tree a -> Bool that takes a tree as an
argument and returns True if and only if the tree is a binary search tree. (1 point)
Hint: you may assume that flatten is available even if you did not solve question 2. It might be useful
to define an auxiliary function isStrictlySorted :: Ord a => [a] -> Bool to determine whether the
elements in a list are strictly increasing.

https://en.wikipedia.org/wiki/Binary_search_tree


Examples:
isSearchTree (Leaf "hello") == True

isSearchTree exampleTree == False

isSearchTree (Node 3 (Leaf 1) (Node 6 (Leaf 4) (Leaf 11))) == True

4. Write a function elemDepth :: Eq a => a -> Tree a -> Maybe Integer which determines whether an
element is in a tree. If the element is in the tree and d is the minimum depth at which the element appears,
then Just d should be returned. Otherwise, Nothing should be returned.
Is the restriction Eq a necessary? (2 points)
Hint: it might be useful to define an auxiliary function of type Maybe a -> Maybe a -> Maybe a to process
results from recursive calls of elemDepth (see also slide 04/20).
The Haskell function min :: Ord a => a -> a -> a might also be useful.

Examples:
elemDepth 7 exampleTree == Just 2

elemDepth 15 exampleTree == Nothing

elemDepth 'b' (Node 'a' (Leaf 'b') (Node 'c' (Leaf 'b') (Leaf 'd'))) == Just 1

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/04x1.pdf#page=20

