
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 5, 10 points Deadline: Tuesday, November 14, 2023, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_05.hs provided on the proseminar page.

• Upload your modified .hs file in OLAT.

• Your .hs file must be compilable with ghci.

• Try to define auxiliary functions within a where or let ... in construct.

Exercise 1 Recursion on Lists 6 p.

1. Define a type synonym Age for a tuple containing the name and Integer age of a person. What is the
difference between the keywords type and data in Haskell? (0.5 points)
Examples:
exampleAges :: [Age]

exampleAges = [("Alice",17), ("Bob",35), ("Clara",17)]

2. A ticket costs €5 for a child aged 0–12, €7.50 for a teenager aged 13–17, and €15 for an adult aged ≥ 18. In
this task, you will implement two equivalent functions ticketCostA, ticketCostB :: Age -> String

which return a string "[name] pays [cost] euros for a ticket" using different Haskell constructs.
To avoid copy-pasting strings, define a local auxiliary function formatCost :: String -> String which
takes a cost and returns the output string for each variant. (1.5 points)

(i) Implement ticketCostA using if-then-else expressions to differentiate between ages. Define the aux-
iliary function formatCost using a let-expression. You may not use guarded equations.

(ii) Implement ticketCostB using guarded equations. Define the auxiliary function formatCost using a
where-construct. You may not use any if-then-else expression.

Examples:
ticketCostA ("Alice",17) == "Alice pays 7.50 euros for a ticket"

ticketCostB ("Bob",-1) -- Causes a sensible error

3. Write a function ageLookup :: [Age] -> Integer -> Maybe [String] which takes a list of ages and a
specific age. If there is at least one person with this age, then a list of the names of people with this age
should be returned, otherwise Nothing should be returned. (1.5 points)
Hint: you might need a recursive call of ageLookup. Try using a case ... of ... to differentiate between
the Just and Nothing cases rather than writing a separate auxiliary function.
Examples:
ageLookup exampleAges 17 == Just ["Alice", "Clara"]

ageLookup exampleAges 10 == Nothing

4. Implement a Haskell function bidirectionalLookup:: [(a, b)] -> Either a b -> Maybe (Either a b)

that takes a list of pairs of type [(a,b)] and a key k :: Either a b. For keys of shape Left l, perform
a lookup on the left half of the pairs, and for keys Right r on the right half of the pairs. In both cases,
return the other half of the first matching pair. If no match is found, the function should return Nothing.
(2.5 points)

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_05.hs


Examples:
bidirectionalLookup exampleAges (Left "Bob") == Just (Right 35)

bidirectionalLookup exampleAges (Right 17) == Just (Left "Alice")

bidirectionalLookup exampleAges (Right 10) == Nothing

Exercise 2 Combined Recursion 4 p.

Consider the following data type for binary trees:

data Tree a = Node a (Tree a) (Tree a) | X deriving Show

The data type is similar to the one from Sheet 04 but with a constructor X instead of Leaf to represent an
empty tree. For example, exampleTree from template_05.hs represents the following tree

1

2

X X

3

X 4

X X

Level 1

Level 2

Level 3

where the different levels of the tree are indicated by dotted gray lines.

1. Implement a function takeLevels :: Int -> Tree a -> Tree a such that takeLevels n t results in
a tree consisting of the upper n levels of the tree t. (1 point)
Examples:
takeLevels 2 exampleTree == Node 1 (Node 2 X X) (Node 3 X X)

takeLevels 0 exampleTree == X

2. Implement a function dropLevels :: Int -> Tree a -> Tree a such that dropLevels n t results in
a list of trees consisting of the subtrees that remain after removing the Nodes of the upper n levels of
the tree t. Since only Nodes are removed, Xs “hanging on” removed Nodes should “fall down,” which is
achieved by fixing the equation dropLevels _ X = [X]. (1 point)

Examples:
dropLevels 2 exampleTree == [X, X, X, Node 4 X X]

dropLevels 0 exampleTree == [exampleTree]

3. Without using takeLevels and dropLevels from above, implement a function

splitAtLevel :: Int -> Tree a -> (Tree a, [Tree a])

that combines the functionality of takeLevels and dropLevels into a single recursive function. (1 point)

Hint: look at the similarities in the recursive structure of takeLevels and dropLevels and combine what
you find using pattern matching on tuples.
Example:
splitAtLevel 2 exampleTree == (Node 1 (Node 2 X X) (Node 3 X X), [X,X,X,Node 4 X X])

4. Implement a function fillXs :: Tree a -> [Tree a] -> (Tree a, [Tree a]) such that fillXs t ts

uses the trees from the list ts to fill-in the Xs in the tree t and returns this result together with the remaining
trees of ts that did not replace any Xs. (1 point)

Hint: Whenever splitAtLevel i t == (s, ss), then the implementation should satisfy the equation
fillXs s ss == (t, []).
Example:
fillXs (Node 1 X X) [Node 2 X X, Node 3 X X, Node 4 X X] ==

Node 1 (Node 2 X X) (Node 3 X X), [Node 4 X X])

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/04.pdf
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_05.hs

