- Mark your completed exercises in the OLAT course of the PS.
- You can use a template .hs file that is provided on the proseminar page.
- Upload your modified .hs file in OLAT.
- Your .hs file must be compilable with ghci.

Exercise 1 Rational Numbers

Implement rational numbers in Haskell. Here, rational numbers are represented by two integers, the numerator and the denominator. For instance the rational number $\frac{-3}{5}$ can be represented as Rat (-3) 5 when using the following data type definition:

```
data Rat = Rat Integer Integer
```

1. Implement a normalisation function normaliseRat : : Rat \rightarrow Rat for rational numbers so that all of Rat 2 4, Rat (-1) (-2) and Rat 12 are transformed into the same internal representation. Furthermore, implement a function createRat :: Integer -> Integer -> Rat that, given two Integers, returns a normalised Rat.
Hint: the Prelude contains a function gcd to compute the greatest common divisor of two integers.
2. Make Rat an instance of Eq and Ord. Of course, Rat $24==$ Rat 12 should evaluate to True. (1 point)
3. Make Rat an instance of Show. Make sure that show r1 == show $r 2$ whenever $r 1==r 2$ for two rational numbers r1 and $r 2$. In particular, show (Rat 12) $==$ show (Rat 24) should evaluate to True. Moreover, integers should be represented without the "/" symbol.
(1 point)

Examples:

show (Rat (-4) (-1)) == "4"
show (Rat (-3) 2) == "-3/2"
show (Rat 3 (-2)) == "-3/2"
4. Make Rat an instance of Num. See https://hackage.haskell.org/package/base-4.18.0.0/docs/Prelude. html\#t:Num for a detailed description of this type class.
(2 points)

Exercise 2 Monoids

A monoid is an algebraic structure that consists of an associative binary operation \circ and a neutral element e where the following laws are satisfied for all x, y, z :

- $x \circ(y \circ z)=(x \circ y) \circ z$
- $x \circ e=e \circ x=x$

We model monoids in Haskell in the following class.
class MonoidC a where
binop :: a -> a -> a
neutral :: a

1. One instance of a monoid can be obtained by using addition on numbers as the binary operation. Moreover, lists form a monoid where the binary operation is the append function. In both instances, the choice of the neutral element can be deduced from the monoid laws.
Define the described MonoidC instances for Double, Integer and [a].
2. We consider extended tally lists to represent numbers, where a plus sign indicates +1 , and a minus sign indicates -1 . For instance, "++", "+++-" and "+--+++" represent the number 2, whereas "---" and "--+--" represent the number -3.

Define a function to normalise such tally lists, such that after normalisation the tally lists do not contain any sublist of the form "+-" or "-+". For instance, all tally lists that represent the number 2 should normalise to "++".
(1 point)
3. We define a datatype Tally with constructor PM : : String \rightarrow Tally to represent extended tally lists. Make Tally an instance of Eq, Show, and MonoidC (with tally list addition as the binary operation). In the latter case, make sure that the result of an addition is normalised. Moreover, PM xs == PM ys should return True whenever xs and ys represent the same number. The show function should just return the internal string representation.
(1 point)
4. Define a function combine that takes a list of elements x_{1}, \ldots, x_{n} in a monoid, and computes the combination of these elements, i.e., $x_{1} \circ \ldots \circ x_{n} \circ e$. The function definition should include the (most general) type of combine.
(1 point)
5. After completing the previous tasks,

- describe informally what the function combine : : [Integer] -> Integer computes,
- describe informally what the function combine : : [String] -> String computes,
- describe why combine $[[1,3,7]]$ and combine $[1,3,7]$ differ, and
- explain the difference between the result of combine [PM "++--+", PM "+---+", PM "---+"] and that of combine ["++--+", "+---+", "---+"].
(1 point)

