
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 7, 10 points Deadline: Tuesday, November 28, 2023, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can use a template .hs file that is provided on the proseminar page.

• Upload your modified .hs file in OLAT.

• Your .hs file must be compilable with ghci.

Exercise 1 Partial Application 5 p.

Consider the following functions:

div1 = (/ 2)

div2 = (2 /)

div3 = (. (/ 2))

div4 = ((/ 2) .)

div5 f = f . div1

div6 x = \ f -> f (2 / x)

div7 (f, x) = div3 f x

div8 = \ (f, x) -> f (x / 2)

1. Explain what the functions div1 and div2 do and write down their most general type. Give an example
that shows the difference between div1 and div2. (0.5 points)

2. Explain what the functions div3 and div4 do and write down their most general type. You can either
infer the types manually or obtain them by calling :t div3, etc. in GHCI. Give an example that shows
the difference between div3 and div4.

Hint: the type of the composition operation (.) is explained in slide 07/17. (1.5 points)

3. We say that a Haskell function f with N input arguments is equal to a Haskell function g, whenever
f x1 .. xN = g x1 .. xN for all inputs x1, . . . , xN. Based on this definition, which of the following
pairs of functions are equal? Justify your answers.

(i) div3 and div5 (1 point)

(ii) div5 and flip div6 (1 point)

(iii) div7 and div8 (1 point)

Exercise 2 Higher-Order Functions 5 p.

In this exercise, we consider a simple Employee datatype.
type Name = String

type Age = Integer

type Salary = Double

data Employee = Employee Name Age Salary deriving Show

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/07x1.pdf#page=17


1. Write a function mapEmployee :: (Name -> Name) -> (Age -> Age) -> (Salary -> Salary) ->

Employee -> Employee that takes three functions to update the name, the age, and the salary of an
employee, respectively. (1 point)

2. The ages and salaries of the employees are updated every year. Write a function nextYear which takes
a list of employees and increases their ages by 1 and their salaries by 20 %. You may not use explicit
recursion on lists or list comprehensions (which will be explained in lecture 8).

Hint: map, mapEmployee, sections, and the identify function id might be useful. (1 point)

3. Use the built-in functions map and filter as well as function composition and λ-abstractions to write a
function that returns a list of the pairs of names and salaries of the employees with a salary < 60 000. You
may not use explicit recursion on lists or list comprehensions.

Hint: look at the example on slide 07/19. (1 point)

4. Extend the quicksort implementation qsort from the lecture to a function

qsortBy :: (a -> a -> Bool) -> [a] -> [a]

where the first argument of qsortBy is a parametric less-or-equal function. (1 point)

5. Define a function that takes a list of employees and produces a sorted list of employee names, sorted by
salary in decreasing order. You may assume that qsortBy is available but should not use explicit recursion
on lists or list comprehensions. (1 point)

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/07x1.pdf#page=19
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/07x1.pdf#page=16

