
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 9, 10 points Deadline: Tuesday, December 12, 2023, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_09.hs provided on the proseminar page.

• Upload your *.hs files in OLAT. (Upload each file separately, and do not use zip, etc.)

• Your *.hs files must be compilable with ghci.

Exercise 1 Scope of Variable/Function Names 4 p.

The following exercises are about the scope of variables and functions.

1. In the Haskell program below, analyze the scope of radius in the three functions operationA, operationB,
and operationC. Moreover, state which radius (global or local) each function refers to and justify your
answers. (1 point)

radius :: Double

radius = 10 -- global radius

computeVolume :: Double -> Double

computeVolume rad = (4/3)*pi*rad^3

operationA :: Double -> Double

operationA radius = computeVolume radius

operationB :: Double

operationB = computeVolume radius

operationC :: Double -> Double

operationC = computeVolume

2. Analyze the implementation of reverseList in the program below. Does it work as expected? Perform
the same variable renaming as in the slides from week 9. (1 point)

reverseList :: [a] -> [a]

reverseList xs =

let reverseListAux xs ys = case xs of

(x:xs) -> reverseListAux xs (x:ys)

_ -> ys

in reverseListAux xs []

3. Given the following program:

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_09.hs
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/09x1.pdf#page=12


squareRootTwo :: Double -> Integer -> Double

squareRootTwo guess n

| n == 0 = guess

| otherwise = squareRootTwo ((guess + 2/guess) / 2) (n-1)

squareRootTwoA :: Double -> Integer -> Double

squareRootTwoA guess n

| n == 0 = guess

| otherwise = squareRootTwoA ((guess + 2/guess) / 2) (n-1) where n=n

squareRootTwoB :: Double -> Integer -> Double

squareRootTwoB guess n

| n == 0 = guess

| otherwise = let n = n-1 in squareRootTwoB ((guess + 2/guess) / 2) n

(a) Consider the funtion squareRootTwo above which approximates
√
2 based on an initial guess for

n iterations. Do squareRootTwoA and squareRootTwoB work as expected? Justify your answers.
(1 point)

(b) Is it considered good practice to have global and local variables/functions of the same name? (1 point)

Exercise 2 Modules and Property-Based Testing with LeanCheck 6 p.

The easiest way to install additional packages for Haskell is the Haskell Tool Stack, called stack on the command
line. If stack is not installed on your system, then please do so.1 If you installed GHC via ghcup, then this is
possible by invoking ghcup install stack.

1. First work through the LeanCheck README2 and then its tutorial3 so that you are able to use the package
and answer basic questions about it. (2 points)

2. Install the LeanCheck package for property-based testing via (0.5 points)

$ stack install leancheck

Make sure that the package is actually available by starting GHCi via

$ stack ghci

and then entering

ghci> import Test.LeanCheck

ghci> :t holds

holds :: Testable a => Int -> a -> Bool

3. Define a module Tree that exports the type Tree (and its constructors) from Sheet 05 and also the
functions fillXs and splitAtLevel. (0.5 points)

4. Write a Listable instance for Tree a. (1 point)

5. Use LeanCheck’s check function to test whether the following property holds:

For arbitrary integers i, trees t and s, and lists of trees ss, we have that whenever
splitAtLevel i t == (s, ss), then also fillXs s ss == (t, ss).

(2 points)

Hint: You can do this by following these steps:

(a) Import LeanCheck and your module Tree.

(b) Insert the Listable instance for Tree a from above.

(c) Implement a function

prop_splitAtLevel_implies_fillXs ::

Int -> Tree Int -> Tree Int -> [Tree Int] -> Bool

1https://docs.haskellstack.org/en/stable/install_and_upgrade/
2https://github.com/rudymatela/leancheck/blob/master/README.md
3https://github.com/rudymatela/leancheck/blob/master/doc/tutorial.md

https://docs.haskellstack.org/en/stable/
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/05.pdf
https://docs.haskellstack.org/en/stable/install_and_upgrade/
https://github.com/rudymatela/leancheck/blob/master/README.md
https://github.com/rudymatela/leancheck/blob/master/doc/tutorial.md


that encodes the property from above. Note that LeanCheck provides the notation ==> for logical
implication. That is, x ==> y means “whenever x, then also y”.

(d) Use LeanCheck’s check function to test your property.


