
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 11, 10 points Deadline: Tuesday, January 16, 2024, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_11.hs provided on the proseminar page.

• Your *.hs file must be compilable with ghc.

• Upload your solution to Exercise 1 in OLAT (*.txt or PDF or as part of *.hs)

• Upload your solution to Exercise 2 as *.hs file in OLAT.

Exercise 1 Evaluation Strategies 5 p.

Consider the following functions.

-- program 1

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

filter f [] = []

filter f (x : xs)

| f x = x : filter f xs

| otherwise = filter f xs

smaller p xs = filter (\x -> x < p) xs

bigger p xs = filter (\x -> x >= p) xs

qsort [] = []

qsort (x:[]) = [x]

qsort (x:xs) = qsort (smaller x xs) ++ x : qsort (bigger x xs)

-- program 2

double x = x + x

take 0 _ = []

take _ [] = []

take n (x : xs) = x : take (n - 1) xs

map f [] = []

map f (x : xs) = f x : map f xs

1. Evaluate the expression qsort ([2] ++ [1]) step-by-step for two evaluation strategies, cf. slide 11/8.

• (a) call-by-value (1 point) and (b) call-by-name (1 point)

2. Evaluate the expression take 1 (map double [3 + 5, 7 + 8]) step-by-step for three evaluation strate-
gies:

• (a) call-by-value (1 point), (b) call-by-name (1 point), and (c) call-by-need (1 point)

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_11.hs
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/11x1.pdf#page=8


Exercise 2 Lazyness and Infinite Data Structures 5 p.

A rooted graph consists of a set of edges between nodes – of the form (source, target) – and additionally has a
distinguished node called root. For instance, Figure 1a contains a rooted graph with distinguished node 1 and
edges {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}.
One way of representing (possibly infinite) rooted graphs is to use (possibly infinite) trees, the so-called unwinding
of a graph. For example the rooted graph of Figure 1a can be represented by the unwinding shown in Figure 1b.

-

1 2 3 4

(a)

-

1

1

1
...

2

. . .

3

. . .

4

. . .

2

1
...

3

1
...

4

1
...

(b)

Figure 1: A graph and its unwinding

In this exercise graphs and (infinite) trees are represented by the following Haskell type definitions:

type Graph a = [(a, a)]

type RootedGraph a = (a, Graph a)

data Tree a = Node a [Tree a] deriving (Eq, Show)

1. Implement a function unwind :: Eq a => RootedGraph a -> Tree a that converts a rooted graph into
its tree representation. (1 point)

2. Implement a function prune :: Int -> Tree a -> Tree a such that prune n t results in a pruned tree
where only the first n layers of the input tree are present. For example invoking prune 2 on the infinite
tree in Figure 1b drops all parts that are depicted by . . . and

..., and prune 0 would return a tree that just
contains the root node 1.

Consider the tree that results from unwinding the rooted graph (z, [(x,z), (z,x), (x,y), (y,x)]),
a figure of eight: x yz . What is the result of prune 4 on this tree? (1 point)

3. Implement a function narrow :: Int -> Tree a -> Tree a that restricts the number of successors for
each node of a tree to a given maximum (by dropping any surplus successors). For example, when calling

the function narrow 1 on the tree 1

2 3

, the result would be the tree 1

2

. (1 point)

4. Define an infinite tree mults :: Tree Integer that represents the graph where every natural number,
starting from 1 points to all its multiples: (1 point)

1 2 3 4 55 6 7 8 9 . . .

5. Describe the results of evaluating each of the following three expressions: narrow 4 $ prune 2 mults,
narrow 1 mults, and prune 1 mults. (1 point)


