
Functional Programming WS 2023/2024 LVA 703025

Exercise Sheet 12, 10 points Deadline: Tuesday, January 23, 2024, 8pm

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_12.tgz provided on the proseminar page.

• Upload your solutions in OLAT.

• Your *.hs files must be compilable with ghc.

Exercise 1 Cyclic Lists 5 p.

We say that a number n is special if and only if it satisfies one of the following two conditions:

• n = 1, or

• there is some special number m such that n = 3m or n = 7m or n = 11m.

The aim of this exercise is to compute the infinite list of all special numbers in ascending order.

1. Write a function merge that merges two lists into one. merge xs ys should fulfill the following conditions:

• All elements in merge xs ys are also elements in xs or ys.

• All elements in xs or ys are also elements in merge xs ys.

• If xs and ys are in ascending order and contain no duplicates, then merge xs ys is in ascending
order and contains no duplicates.

Example: merge [1,18,200] [19,150,200,300] = [1,18,19,150,200,300] (1 point)

2. Define the infinite list sNumbers that computes the infinite list of special numbers in ascending order
without duplicates as a cyclic list.

Hint: Use the function merge and functions like map (3*). Also have a look at the definition of fibs on
slide 7 of lecture 12.

Example: take 10 sNumbers = [1,3,7,9,11,21,27,33,49,63] (2 points)

3. Convince yourself that the computation of special numbers is not that easy and also not that efficient
without infinite lists: implement a function sNum :: Int -> Integer where sNum i computes the i-th
special number, i.e., sNum i == sNumbers !! i, where the implementation of sNum must not use lists,
and compare the execution times of sNum 200 and sNumbers !! 200.

Hint: Try to define a predicate that tests whether a number is special; a special number has a prime
factorization of a very specific shape. (2 points)

Exercise 2 Sets 5 p.

In this exercise, we consider an abstract datatype to represent sets with the following (minimalistic) interface:

insert :: Eq a => a -> Set a -> Set a -- insertion of a single element

empty :: Set a -- the empty set

delete :: Eq a => a -> Set a -> Set a -- deletion of an element from a set

member :: Eq a => a -> Set a -> Bool -- testing whether an element is in a set

foldSet :: (a -> b -> b) -> b -> Set a -> b

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_12.tgz
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/slides/12x1.pdf#page=7


Note that for deletion, it is not required that the deleted element is in the set, similar to the mathematical
definition of a set where {1, 2, 3} \ {4} = {1, 2, 3} and does not give rise to an error.
Folding over a set should satisfy the property foldSet f e {x1, . . . , xn} = f x1 (f x2 . . . (f xn e) . . . ).
For example, if s represents the set {1, 2, 3}, then foldSet f e s may evaluate to f 1 (f 2 (f 3 e)) or
f 3 (f 1 (f 2 e)) or even f 1 (f 2 (f 3 (f 2 e))), since {1, 2, 3} = {3, 1, 2} = {1, 2, 3, 2}.

1. We have provided an initial implementation of sets in the module ListSet in template_12.tgz. Write a
separate module SetMore that imports ListSet and provides the following additional operations on sets:
(3 points)

union :: Eq a => Set a -> Set a -> Set a -- a) 1 point

intersection :: Eq a => Set a -> Set a -> Set a -- b) 1 point

isEmpty :: Set a -> Bool -- c) 1 point

You may not modify ListSet. You can find a test application in module Main.

2. Provide a better implementation of the abstract set interface than ListSet, e.g., one that is based on
lists without duplicates or sorted lists. You may change Eq a into Ord a if desired. Also, provide an Eq

instance for your set implementation.

Replace the import of ListSet by your new module in SetMore and in the test application in Main, and
analyse the performance difference between the two versions. (2 points)

http://cl-informatik.uibk.ac.at/teaching/ws23/fp/sheets/template_12.tgz

