- Mark your completed exercises in the OLAT course of the PS.
- You can start from template_12.tgz provided on the proseminar page.
- Upload your solutions in OLAT.
- Your *.hs files must be compilable with ghc.

Exercise 1 Cyclic Lists

We say that a number n is special if and only if it satisfies one of the following two conditions:

- $n=1$, or
- there is some special number m such that $n=3 m$ or $n=7 m$ or $n=11 m$.

The aim of this exercise is to compute the infinite list of all special numbers in ascending order.

1. Write a function merge that merges two lists into one. merge xs ys should fulfill the following conditions:

- All elements in merge xs ys are also elements in xs or ys.
- All elements in xs or ys are also elements in merge xs ys.
- If xs and ys are in ascending order and contain no duplicates, then merge xs ys is in ascending order and contains no duplicates.

Example: merge $[1,18,200][19,150,200,300]=[1,18,19,150,200,300]$
(1 point)
2. Define the infinite list sNumbers that computes the infinite list of special numbers in ascending order without duplicates as a cyclic list.
Hint: Use the function merge and functions like map (3*). Also have a look at the definition of fibs on slide 7 of lecture 12 .
Example: take 10 sNumbers $=[1,3,7,9,11,21,27,33,49,63]$
3. Convince yourself that the computation of special numbers is not that easy and also not that efficient without infinite lists: implement a function sNum : : Int -> Integer where sNum i computes the i-th special number, i.e., sNum i $==$ sNumbers !! i, where the implementation of sNum must not use lists, and compare the execution times of sNum 200 and sNumbers !! 200.
Hint: Try to define a predicate that tests whether a number is special; a special number has a prime factorization of a very specific shape.
(2 points)

Exercise 2 Sets

In this exercise, we consider an abstract datatype to represent sets with the following (minimalistic) interface:

```
insert :: Eq a => a -> Set a -> Set a -- insertion of a single element
empty :: Set a -- the empty set
delete :: Eq a => a -> Set a -> Set a -- deletion of an element from a set
member :: Eq a => a -> Set a -> Bool -- testing whether an element is in a set
foldSet :: (a -> b -> b) -> b -> Set a -> b
```

Note that for deletion, it is not required that the deleted element is in the set, similar to the mathematical definition of a set where $\{1,2,3\} \backslash\{4\}=\{1,2,3\}$ and does not give rise to an error.
Folding over a set should satisfy the property foldSet f e $\left\{x_{1}, \ldots, x_{n}\right\}=f x_{1}\left(f x_{2} \ldots\left(f x_{n} e\right) \ldots\right.$).
For example, if s represents the set $\{1,2,3\}$, then foldSet f es may evaluate to $f 1$ (f 2 (f 3 e)) or f 3 (f 1 (f 2 e)) or even $f 1$ (f $2(f 3(f 2 e))$), since $\{1,2,3\}=\{3,1,2\}=\{1,2,3,2\}$.

1. We have provided an initial implementation of sets in the module ListSet in template_12.tgz. Write a separate module SetMore that imports ListSet and provides the following additional operations on sets: (3 points)
```
union :: Eq a => Set a -> Set a -> Set a -- a) 1 point
intersection :: Eq a => Set a -> Set a -> Set a -- b) 1 point
isEmpty :: Set a -> Bool -- c) 1 point
```

You may not modify ListSet. You can find a test application in module Main.
2. Provide a better implementation of the abstract set interface than ListSet, e.g., one that is based on lists without duplicates or sorted lists. You may change Eq a into Ord a if desired. Also, provide an Eq instance for your set implementation.
Replace the import of ListSet by your new module in SetMore and in the test application in Main, and analyse the performance difference between the two versions. (2 points)

