
WS 2023/2024

Functional Programming
Week 2 – Tree Shaped Data and Datatypes

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

Last Lecture

• algorithm (can be informal) vs. program (concrete programming language)

• Haskell script (code, program, . . .), e.g., program.hs
fahrenheitToCelsius f = (f - 32) * 5 / 9

consists of function definitions that describe input-output behaviour

• function- and parameter-names have to start with lowercase letters

• read-eval-print loop (REPL):
load script, enter expressions and let these be evaluated

$ ghci program.hs

... welcome message ...

Main> fahrenheitToCelsius (3 + 20) - 7

-12.0

Main> ... further expressions ...

...

Main> :q

RT et al. (DCS @ UIBK) Week 2 2/25

Structured Data

RT et al. (DCS @ UIBK) Week 2 3/25

Different Representations of Data
• some (abstract) element can be represented in various ways
• example: numbers

• roman: XI
• decimal: 11
• binary: 1011
• English: eleven
• tally list: |||||||||||

• fact: algorithms depend on concrete representation
• example: addition

• decimal + binary: process digits of both numbers from right to left

7823
+ 909
8732

• tally list: just write the two numbers side-by-side (||| + || = |||||)
• roman: algorithm? (IV + IX = XIII)
• English: not well-suited (twentynine + two = thirtyone)

• in Haskell: numbers are built-in, representation not revealed to user
RT et al. (DCS @ UIBK) Week 2 4/25

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Representations of Data – Continued
• representation must be chosen appropriately
• example: person

• photographer:

• social analysis:

Alice BobSue

TomPaul

• advertizing: Bob (bob@foo.com, employee, hobbies: photography, jazz music, . . .)
• genealogist:

Alice

oo oo

oo Bob

Carmen John Suzan Jack

Jack

RT et al. (DCS @ UIBK) Week 2 5/25

Tree Shaped Data
• in functional programming most of the data is tree shaped
• a tree

• has exactly one root node
• can have several subtrees; nodes without subtrees are leaves
• nodes and edges can be labeled

• in computer science, trees are usually displayed upside-down
• examples from previous slide

• advertizing: Bob

bob@foo.com employee •

photography jazz music

email
job hobbies

• genealogist:

Alice Bob

Carmen John Suzan Jack

Jack

mother fathermother father

mother father

RT et al. (DCS @ UIBK) Week 2 6/25

Expressions = Trees
• mathematical expressions can be represented as trees
• example

• expression in textual form: (5 + 2)× 3ˆ2
• expression as tree ×

+

5 2

ˆ

3 2

• remarks
• the process of converting text into tree form is called parsing
• operator precedences (ˆ binds stronger than ×, and × binds stronger than +) and

parentheses are only required for parsing
• parsing (5 + 2)× (3ˆ2) results in tree above
• 5 + 2× 3ˆ2 and ((5 + 2)× 3)ˆ2 represent other trees

• algorithm of calculator
• convert textual input into tree
• evaluate the tree bottom-up, i.e., start at leaves and end at root

RT et al. (DCS @ UIBK) Week 2 7/25

Programs = Trees

• programs can be represented as trees, too: abstract syntax tree
• example

• program in textual form
-- some comment

fToC f = (f - 32) * 5 / 9

areaRect l w = l * w
• abstract syntax tree (draft) •

=

fToC

f

/

*

-

f 32

5

9

=

areaRect

l w

*

l w

• comments and parentheses are no longer present in syntax tree

RT et al. (DCS @ UIBK) Week 2 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tree Shaped Data

• many programs deal with tree shaped data
• examples

• calculator evaluates expression tree
• compiler translates abstract syntax tree into machine code
• search engine translates query into HTML (tree shaped)
• contact application manages tree shaped personal data
• file systems are organised as trees

• trees as mental model or representation of data is often suitable

• good news: processing tree shaped data is well-supported in functional programming

• next lecture: define functions on trees

• this lecture: restriction of trees via types

RT et al. (DCS @ UIBK) Week 2 9/25

Types

RT et al. (DCS @ UIBK) Week 2 10/25

Types

• functions are often annotated by their domain and codomain, e.g.,
• (!) : N → N
• (/) : R× (R \ {0}) → R
• log2 : R>0 → R

• domain and codomain provide useful information
• domain: what are allowed inputs to a function
• codomain: what are potential outputs of the function

• aim: specify domains and codomains of (Haskell-)functions
• notions

• elements or values
• maths: 5, 8, π, − 3

4
, . . .

• Haskell: 5, 8, 3.141592653589793, -0.75, . . . , "hello", 'c', . . .
• sets of elements to specify domain or codomain, in Haskell: types

• maths: N, Z, Q, R, Q \ {0}, . . .
• Haskell: Integer (Z), Double (R), String, Char, . . .

RT et al. (DCS @ UIBK) Week 2 11/25

Typing Judgements
• in maths, we write statements like 7 ∈ Z, 7 ∈ R, 0.75 /∈ Z
• similarly in Haskell, we can express that a value or expression has a certain type via
typing judgements

• format: expression :: type
• examples

• 7 :: Integer or 7 :: Double
• 'c' :: Char

• that an expression indeed has the specified type is checked by the Haskell compiler
• if an expression has not the given type, a type error is displayed
• examples which raise an error

• 7 :: String or 0.75 :: Integer or 'c' :: String
• (7 :: Integer) :: Double

• remarks
• unlike in maths where N ⊆ Z ⊆ Q, in Haskell the types Integer and Double are not subtypes

of each other
• although some expressions can have both types (e.g., 7 + 5),

in general numbers of different types have to be converted explicitly
• once a typing judgement is applied, the type of that expressions is fixed

RT et al. (DCS @ UIBK) Week 2 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Typing of Haskell Expressions
• not only values but also functions have a type, e.g.,

• (/) :: Double -> Double -> Double
• (+) :: Integer -> Integer -> Integer
• (+) :: Double -> Double -> Double
• head :: String -> Char

remarks
• a function can have multiple types, e.g., (+)
• limited expressivity, e.g. (/) :: Double -> Double \ {0} -> Double not allowed

• type checking enforces that in all function applications,
type of arguments matches input-types of function

• example: consider expression expr1 / expr2
• recall: (/) :: Double -> Double -> Double
• it will be checked that both expr1 and expr2 have type Double
• type of the overall expression expr1 / expr2 will then be Double

• examples
• 5 + 3 / 2 ✔
• 5 + '3' or 5.2 + 0.8 :: Integer ✘

RT et al. (DCS @ UIBK) Week 2 13/25

Static Typing

• Haskell performs static typing

• static typing: types will be checked before evaluation
(by contrast, dynamic typing checks types during evaluation)

• when loading Haskell script
• check types of all function definitions someFun x ... z = expr:

check that lhs someFun x ... z has same type as rhs expr
• consequence: expressions cannot change their type during evaluation

• when entering expression in REPL: type check expression before evaluation
• benefits

• no type checking required during evaluation
• no type errors during evaluation

RT et al. (DCS @ UIBK) Week 2 14/25

Built-In Types – A First Overview
• numbers

• Integer – arbitrary-precision integers
• Int – fixed-precision integers with range at least {−228, . . . , 228 − 1} (-100, 0, 999)
• Float – single-precision floating-point numbers (-12.34, 5.78e36)
• Double – double-precision floating-point numbers

• characters and text
• Char – a single character ('a', 'Z', ' ')
• String – text of arbitrary length ("", "a", "The answer is 42.")
• some characters have to be escaped via the backslash-symbol \:

• '\t' and '\n' – tabulator and new-line
• '\"' and '\'' – double- and single quote
• '\\' – the backslash character
• example: in the program

text = "Please say \"hello\"\nwhenever you enter the room"

the string text corresponds to the following two lines:

Please say "hello"

whenever you enter the room

• Bool – yes/no-decisions or truth-values (True, False)
RT et al. (DCS @ UIBK) Week 2 15/25

Datatypes

RT et al. (DCS @ UIBK) Week 2 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Current State

• each value and function in Haskell has a type

• types are used to define input and output of function

• example: fahrenheitToCelsius :: Double -> Double

• built-in types for numbers, strings, and truth values

• missing: how to define types that describe tree shaped data?

• solution: definition of (algebraic) datatypes

RT et al. (DCS @ UIBK) Week 2 17/25

Datatype Definitions
• recall: a tree consists of a (labelled) root and 0 or more subtrees

• a datatype definition defines a set of trees by specifying all possible labelled roots
together with a list of allowed subtrees

• Haskell scripts can contain many datatype definitions of the form
data TName =

CName1 type1_1 ... type1_N1

| ...

| CNameM typeM_1 ... typeM_NM

deriving Show
where

• data is a Haskell keyword to define a new datatype
• TName is the name of the new type; type-names always start with capital letters
• CName1,. . . ,CNameM are the labels of the permitted roots;

these are called constructors and have to start with capital letters
• typeI_J can be any Haskell type, including TName itself
• | is used as separator between different constructors
• deriving Show is required for displaying values of type TName

RT et al. (DCS @ UIBK) Week 2 18/25

Example Datatype Definition – Date

data Date = -- name of type

DMY -- name of constructor

Int -- day

Int -- month

Integer -- year

deriving Show

• here, there is only one constructor: DMY

• for day and month the precision of Int is sufficient

• the values of the type Date are exactly trees of the form

DMY

some Int some Int some Integer

• in Haskell, these trees are built via the constructor DMY; DMY is a function of type
Int -> Int -> Integer -> Date that is not evaluated

• example value of type Date: DMY 16 10 2023

RT et al. (DCS @ UIBK) Week 2 19/25

Example Datatype Definition – Person

data Person = -- name of type

Person -- constructor name can be same as type name

String -- first name

String -- last name

Bool -- married

Date -- birthday

deriving Show

• reuse of previously defined types is permitted, in particular Date

• this leads to trees with more than one level of subtrees

• example program that defines a person (and an auxiliary date)
today = DMY 16 10 2023

myself = Person "Rene" "Thiemann" True today

-- is the same as

myself = Person "Rene" "Thiemann" True (DMY 16 10 2023)

RT et al. (DCS @ UIBK) Week 2 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Trees and Their Textual Representation

• in Haskell, trees have to be entered in a textual form, and trees are also output in textual
form

• to define a tree with root constructor C and subtrees t1, . . . , tN
• one writes C (t1) ... (tN);
• if some tI is not a composed expression, then one can omit the parenthesis around tI;
• this format is the same as for function applications

• example

Person

"Rene" "Thiemann" True DMY

16 10 2023

• Person "Rene" "Thiemann" True (DMY 16 10 2023) ✔
• Person "Rene" "Thiemann" (5 > 3) (DMY 16 (length "0123456789") 2023) ✔
• Person ("Rene", "Thiemann", True, DMY (16, 10, 2023)) ✘
• Person "Rene" "Thiemann" True DMY 16 10 2023 ✘

RT et al. (DCS @ UIBK) Week 2 21/25

Example Datatype Definition – Vehicle

data Brand = Audi | BMW | Fiat | Opel deriving Show

data Vehicle =

Car Brand Double -- horsepower

| Bicycle

| Truck Int -- number of wheels

deriving Show

• Brand just defines 4 car brands; all ”trees” of type Brand consist of a single node;
such datatypes are called enumerations

• there are three kinds of Vehicles, each having a different list of types

• example expressions of type Vehicle:
Car Fiat (60 + 1)

Car Audi 149.5

Bicycle

Truck (-7) -- types don't enforce all sanity checks

RT et al. (DCS @ UIBK) Week 2 22/25

Example Datatype Definition – Expr

data Expr =

Number Integer

| Variable String

| Plus Expr Expr

| Negate Expr

deriving Show

• type Expr models arithmetic expressions with addition and negation

• Expr ia a recursive datatype: Expr is defined via Expr itself
• recursive datatypes contain values (trees) of arbitrary large height

• expression (−(5 + x)) + 3 in Haskell (as value of type Expr):
Plus (Negate (Plus (Number 5) (Variable "x"))) (Number 3)

• expression as tree Plus

Negate

Plus

Number

5

Variable

"x"

Number

3

RT et al. (DCS @ UIBK) Week 2 23/25

Example Datatype Definition – Lists

• lists are just a special kind of trees, e.g., lists of integers
data List =

Empty

| Cons Integer List

deriving Show

• example representation of list [1, 7, 9, 2]
• in Haskell: Cons 1 (Cons 7 (Cons 9 (Cons 2 Empty)))
• as tree: Cons

1 Cons

7 Cons

9 Cons

2 Empty

RT et al. (DCS @ UIBK) Week 2 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• mental model: data = tree shaped data

• type = set of values; restricts shape of trees

• built-in types for numbers and strings

• user-definable datatypes, e.g., for expressions, lists, persons
data TName =

CName1 type1_1 ... type1_N1

| ...

| CNameM typeM_1 ... typeM_NM

deriving Show

• next lecture: function definitions on trees

RT et al. (DCS @ UIBK) Week 2 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Structured Data
	
	Types
	
	Datatypes

