

Functional Programming

Week 7 - Higher-Order Functions
René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner
Department of Computer Science

Higher-Order Functions

Last Lecture

- type class definitions
class (...) => TCName a where
fName :: ty $\quad--$ type ty + description of fName
\ldots
lhs $=$ rhs
- type class instantiations
instance (...) \Rightarrow TCName (TConstr a1 .. aN) where
... -- implementation of functions
- examples
- classes: Eq a, Num a, Integral a, RealFrac a,
- instances: Integral Int, Eq a => Eq (Maybe a), (Ord a, Ord b) => Ord (a,b),...
- documentation:
http://hackage.haskell.org/package/base-4.17.0.0/docs/Prelude.html
- switch between operators and function names: (+) and `div`

Functions and Values

- functions take values as input and produce output values
- values so far: numbers, characters, pairs, lists, user defined datatypes, ...
- examples
- lookup :: Eq a \Rightarrow a \rightarrow [(a,b)] \rightarrow Maybe b
- elem :: Eq a => a -> [a] -> Bool
- important extension: functions are values
- result: higher-order functions
- functions can take other functions as input, e.g.,
nTimes : : (a -> a) -> Int \rightarrow a \rightarrow a
-- nTimes f n $x=f(.$. (f $x)$)
- the result of a function can be a function, e.g.,
compose :: (b -> c) -> (a -> b) -> (a -> c)
-- compose $f g$ is the function that takes an x and results in $f(g(x))$
- observations
- higher-order functions are quite natural to define, e.g., compose $f g x=f(g x)$
- higher-order functions are useful to avoid code duplication

Partial Application

- question: how to construct values that are functions?
- possible answer: partial application
- note: type constructor for functions (->) associates to the right, cf. lecture 4, slide 10

$$
\mathrm{a}->\mathrm{b} \rightarrow \mathrm{c}->\mathrm{d} \text { is identical to } \mathrm{a}->(\mathrm{b} \rightarrow(\mathrm{c}->\mathrm{d}))
$$

- note: function application associates to the left
f expr1 expr2 expr3 is identical to ((f expr1) expr2) expr3
- example with parentheses added
average : : Double -> (Double -> Double)
(average x) $y=(x+y) / 2$
- partial application: average is applied on less than two arguments
- example expressions
- average :: Double -> (Double -> Double)
- average 3 :: Double -> Double
- (average 3) 5 :: Double
- average 35 :: Double

RT et al. (DCS @ UIBK) Week 7
first 1 argument applied, then another one
same as above

Sections, flip

- sections are a special form of partial applications in combination with operators \&
- (expr \&) is the same as (\&) expr
- (\& expr) is a function that takes an x and returns x \& expr
- (\& expr) is the same as flip (\&) expr
- flip is a predefined function that swaps the arguments of a binary function

> flip : : (a -> b -> c) -> (b -> a -> c)
-- same as (a -> b -> c) -> b -> a -> c
flip f y $x=f \quad x \quad y$

- exception: (- expr) is not flip (-) expr but just the negated value of expr
- examples
- (> 3)
- (3 >)
- (3 -)
- (-3)
test whether a number is larger than 3 test whether 3 is larger than a number subtract something from 3
the number -3

Partial Application and Evaluation

- if defining equation of f is of shape f pat1 ... patN with N arguments, then evaluation of f expr1 ... exprM can only happen, if $M \geq N$
- example nTimes and tower
nTimes $f \mathrm{n} \mathrm{x}$
$\mid \mathrm{n}=0=\mathrm{x}$
| otherwise $=f(n T i m e s ~ f(n-1) x)$
tower $\mathrm{x} \mathrm{n}=\mathrm{nTimes}\left(\mathrm{x}^{\text {- }}\right.$) n 1
tower 42
$=$ nTimes ($\left.4^{\sim}\right) 21 \quad--\left(4^{\sim}\right)$ cannot be evaluated!
$=4^{\text {- }}$ (nTimes ($4^{\text {~ }}$) 1 1) -- evaluate second argument of
$=4^{-}\left(4^{-}\right.$(nTimes $\left.\left.\left(4^{\wedge}\right) 01\right)\right)$-- again, argument evaluation
$=4$ ~ (4 ~ 1)
$=4$ ~ 4
$=256$

Partial Application and Evaluation, Continued

- if defining equation of f is of shape f pat1 ... patN with N arguments, then evaluation of f expr1 . . e exprM can only happen, if $M \geq N$
- example with $\mathrm{M}>\mathrm{N}$

```
selectFunction :: Bool -> (Int -> Int) -- same as Bool -> Int -> Int
selectFunction True = (* 3)
selectFunction False = abs
    selectFunction False (-2) -- M > N
= abs (-2)
= 2
```

- restriction: all defining equations of a function must have same number of arguments
- consequence: the following code is not allowed, although it would make sense
selectFunction' :: Bool -> Int -> Int
selectFunction' True $=$ (* 3)
selectFunction' False $\mathrm{x}=2-\mathrm{x}$
RT et al. (DCS @ UIBK) Week 7

Anonymous Functions: λ abstractions

- example: apply n-times the function that given an x computes $3 \cdot(x+1)$
- one possibility: local definition of a function example :: Num a => Int -> a -> a example $=$ let $\mathrm{f} x=3 *(\mathrm{x}+1)$ in nTimes f -- this is equivalent to example $\mathrm{n} y=$ let $\mathrm{f} x=3 *(\mathrm{x}+1)$ in nTimes $f \mathrm{n} y$
- annoying: creation of function names, here f
- alternative: creation of anonymous function via λ abstraction
- syntax: \ pat1 ... patN -> expr λ is written as \in Haskell
- equivalent to: let f pat1 ... patN $=$ expr in f for some fresh name f
example $=$ nTimes ($\backslash \mathrm{x}->3 *(\mathrm{x}+1)$)
- difference between lambda abstractions and local function definitions
- recursion not expressible via lambda abstractions
- lambda abstractions do not require new function names

Currying

- most of the time we defined functions in curried form (Haskell B. Curry, M. Schönfinkel)
f :: ty1 -> ... -> tyN -> ty
- alternative is tupled form
f : : (ty1, ..., tyN) -> ty
- observations
- partial application is only possible with curried form
tupled form has advantage when passing logically connected values around
type Date $=$ (Int, Int, Int)
differenceDate :: Date -> Date -> Int -- number of days between two dates -- but not: Int -> Int -> Int -> Int $->$ Int -> Int -> Int
- argument order is relevant in curried form: partial application only possible from left to right
- divide 1000 by something:
div 1000
- division by 1000 :
let $f x=\operatorname{div} x 1000$ in f
- alternative using flip: flip div 1000
- rule of thumb: put arguments that are unlikely to change to the left

Example Higher-Order Functions and Applications

Generalize Common Programming Patterns

- consider the following tasks
- multiply all list elements by 2
- convert all characters in a string to upper case
- compute a list of email addresses from a list of students
- possible implementation
multTwo [] = []
multTwo ($\mathrm{x}: \mathrm{xs}$) $=2$ * x : multTwo xs
toUpperList [] = []
toUpperList (c : cs) = toUpper c : toUpperList cs
eMails [] = []
eMails ($\mathrm{s}: \mathrm{ss}$) = getEmail s : eMails s
- observation: all of these functions are similar
- abstract version: apply some function on each list element
- aim: program the abstract version only once (will be a higher-order function), and then just instantiate this function for each task
RT et al. (DCS © UIBK)

$$
\text { Week } 7
$$

The filter Function

- filter selects all elements of a list that satisfy some condition
filter :: (a -> Bool) -> [a] -> [a]
filter f [] = []
filter f (x : xs)
| f x = x : filter f xs
| otherwise = filter f xs
- example applications
-- test whether some element is included in a list
elem :: Eq a \Rightarrow a $->$ [a] -> Bool
elem x xs $=$ filter ($==$ x) xs /= []
-- the well known lookup function
lookup : : Eq a => a \rightarrow [(a,b)] -> Maybe b
 [] -> Nothing
((_,v) : _) -> Just v

The Function Composition Operator (.)

- function composition is a higher-order function (in Haskell: (.)) (.) :: (b \rightarrow c) $->(\mathrm{a} \rightarrow>\mathrm{b})$-> ($\mathrm{a} \rightarrow \mathrm{c}$) (f . g) = \x -> f (g x)
- it takes two functions as input and returns a function
- in Haskell, function composition is often used to chain several function applications without explicit arguments
- example: given a number, first add 5 , then compute the absolute value, then multiply it by 7 , and finally convert it into a string and determine its length
- without composition: many parenthesis, not very readable
\ x \rightarrow length (show ((abs ($\mathrm{x}+5$)) * 7))
- written conveniently with function composition
length . show . (* 7) . abs . (+ 5)

RT et al. (DCS @ UIBK)
Week 7
17/20

Application: Names of Good Students

- given a list of students, compute a sorted list of all names of students whose average grade is 2 or better
- implementation
data Student $=$. .
avgGrade :: Student -> Double
...
getName :: Student -> String
goodStudents :: [Student] -> [String]
goodStudents = qsort . map getName . filter (\backslash s -> avgGrade s <= 2)

Collection View

- often lists are used to encode collections of elements
- then one can process the whole collection via map, filter, sum, ... without looking at the position of the list elements
- list index function (!!) is rarely used in these applications
- in particular: do not write the following kind of loop

```
for (int i = 0; i < length; i++) {
```

xs[i] $=$ someFun(xs[i]);
\}
as functional program
map (\ i -> someFun (xs !! i)) [0 .. length xs - 1]
but instead just write
map someFun xs

- the bad program needs $\sim \frac{1}{2} n^{2}$ evaluation steps for a list of length n : lists \neq arrays! RT et al. (DCS @ UIBK) Week 7

Summary

- higher-order functions
- functions may have functions as input
- functions may have functions as output
- partial application
- n-ary function is value
- applying n-ary function on 1 argument results in $n-1$-ary function
- sections are special syntax for partially applied operators
- λ-abstraction is anonymous function
- process lists that encode a collection via map, filter, ..

