

Functional Programming

Week 8 - Fold, List Comprehension, Calendar Application

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

Last Lecture

- partial application: if f has type a $->$ b \rightarrow c $->d$, then build expressions

```
    f :: a -> b -> c -> d
```

 f expr : : b \(\rightarrow\) c \(->\mathrm{d}\)
 f expr expr : : c \(\rightarrow\) d
 - sections: ($\mathrm{x}>$) and (> x)
- λ-abstractions: \ pat -> expr
- higher-order functions
- functions are values
- functions can take functions as input or return functions as output
- example higher-order functions
(.) :: (b -> c) -> (a -> b) -> (a -> c)
map :: (a -> b) -> [a] -> [b]
filter :: (a -> Bool) -> [a] -> [a]

Fold-Functions on Lists

The foldr Function

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = x `f` (foldr f e xs)
```

- foldr fe captures structural recursion on lists
- e is the result of the base case
- f describes how to compute the result given the first list element and the recursive result
- foldr f e replaces : by f and [] by e

$$
\text { foldr } f e\left[x_{-} 1, x_{-} 2, x_{-} 3, x_{-} 4\right]=x_{-} 1 \text { `f` (x_2 `f` (x_3 `f` (x_4 `f` e))) }
$$

Expressiveness of foldr

- foldr f e replaces: by f and [] by e;
foldr f e [x_1, x_2, x_3, x_4] = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))
- foldr f e captures structural recursion on lists
- consequence: all function definitions that use structural recursion on lists can be defined via foldr
- example definitions via foldr

```
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) [] -- merge list of lists into one list
xs ++ ys = foldr (:) ys xs
length = foldr (\ _ -> (+ 1)) 0
map f = foldr ((:) . f) []
all f = foldr ((&&) . f) True -- do all elements satisfy predicate?
```

Variants of foldr

```
-- foldr from previous slide
```

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [x_1, $\left.x_{-} 2, x_{-} 3\right]=x_{-} 1 ~ ` f ` ~\left(x _2 ~ ` f ` ~\left(x _3 ~ ` f ` ~ e\right)\right) ~$
-- foldr without starting element, only for non-empty lists
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x_1, x_2, x_3] = x_1 `f` (x_2 `f` x_3)
-- application: maximum of list elements
maximum $=$ foldr1 max
-- foldl, apply function starting from the left
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [x_1, $\left.x _2, x _3\right]=\left(\left(e ~ ` f ` x _1\right) ~ ` f ` ~ x _2\right) ~ ` f ` ~ x _3$
-- application: reverse
reverse = foldl (flip (:)) []

More Library Functions

Take-While, Drop-While

- takeWhile :: (a -> Bool) -> [a] -> [a] and dropWhile :: (a -> Bool) -> [a] -> [a]
- takeWhile p xs takes elements from left of xs while p is satisfied
- dropWhile p xs drops elements from left of xs while p is satisfied
- identity: takeWhile p xs ++ dropWhile p xs = xs
- combinations - more efficient versions of the following definitions
- splitAt : : Int -> [a] -> ([a], [a])
splitAt n xs $=$ (take n xs, drop n xs)
- span :: (a -> Bool) -> [a] -> ([a], [a])

```
span p xs = (takeWhile p xs, dropWhile p xs)
```


Example Application: Separate Words

- task: write function words : : String -> [String] that splits a string into words
- example: words "I am fine. " = ["I", "am", "fine."]
- implementation:

```
words s = case dropWhile (== ' ') s of
    "" -> []
    s1 -> let (w, s2) = span (/= ' ') s1
        in w : words s2
```

- notes
- non-trivial recursion on lists
- words is already predefined
- unwords :: [String] -> String is inverse which inserts blanks
- similar functions to split at linebreaks or to insert linebreaks

```
lines :: String -> [String]
unlines :: [String] -> String
```


Combining Two Lists

- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith $f\left[x_{1}, \ldots, x_{m}\right]\left[y_{1}, \ldots, y_{n}\right]=\left[x_{1}{ }^{`} \mathrm{f}^{`} y_{1}, \ldots, x_{\min \{m, n\}}{ }^{`} \mathrm{f}{ }^{\wedge} y_{\min \{m, n\}}\right]$
- resulting list has length of shorter input
- above equality is not Haskell code, think about recursive definition yourself
- specialization zip
-- (,) :: a -> b -> (a, b) is the pair constructor
zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)
- inverse function: unzip :: [(a, b)] -> ([a], [b])
- examples
- zip [1, 2, 3] "ab" = [(1, 'a'), (2, 'b')]
- unzip [(1, 'c'), (2, 'b'), (3, 'a')] = ([1, 2, 3], "cba")
- zipWith (*) $[1,2][3,4,5]=[1 * 3,2 * 4]=[3,8]$

Application: Testing whether a List is Sorted

```
isSorted :: Ord a => [a] -> Bool
isSorted xs = all id $ zipWith (<=) xs (tail xs)
```

- id : : a $->$ a is the identify function id $\mathrm{x}=\mathrm{x}$; used as "predicate" whether a Boolean is True
- (\$) is application operator with low precedence, $f \$ x=f x$, used to avoid parentheses
- example:
isSorted [1, 2, 5, 3]
$=$ all id $\$$ zipWith $(<=)[1,2,5,3][2,5,3]$
= all id [1 <= 2, $2<=5,5<=3]$
= all id [True, True, False]
= id True \&\& id True \&\& id False \&\& True
= False

Table of Precedences

precedence	operators	associativity
9	$!!, \cdot$	left(!!), right(.)
8	$, \sim, * *$	right
7	$*, /$, div $^{\prime}$	left
6	,+-	left
5	$:,++$	right
4	$==, /=,<,<=,>,>=$	none
3	$\& \&$	right
2	$\|\mid$	right
1	$\gg, \gg=$	left
0	$\$$	right

- all of ${ }^{\wedge},^{\wedge},{ }^{* *}$ are for exponentiation: difference is range of exponents
- operators (>>) and (>>=) will be explained later

List Comprehension

List Comprehension

- list comprehension is similar to set comprehension in mathematics
- concise, readable definition
- sum of even squares up to $100: \sum\left\{x^{2} \mid x \in\{0, \ldots, 100\}\right.$, even $\left.(x)\right\}$
- examples of list comprehension in Haskell

```
evenSquares100 = sum [ x^2 | x <- [0 .. 100], even x]
prime n = n >= 2 && null [ x | x <- [2 .. n - 1], n `mod` x == 0]
pairs n = [ (i, j) | i <- [0..n], even i, j <- [0..i]]
> pairs 5
[(0,0),(2,0),(2,1),(2,2),(4,0),(4,1),(4,2),(4,3),(4,4)]
```


List Comprehension - Structure

```
foo zs = [ x + y + z |
    x <- [0..20],
    even x,
    let y = x * x,
    y < 200,
    Just z <- zs]
```

- list comprehension is of form [e | Q] where
- e is Haskell expression, e.g., $x+y+z$
- Q is the qualifier, a possibly empty comma-separated sequence of
- generators of form pat <- expr where the expression has a list type, e.g., x <- [0..20] or Just z <- zs;
e and later parts of qualifier may use variables of pat
- guards, i.e., Boolean expressions, e.g., even x or y < 200
- local declarations of form let decls (no in!);
e and later parts of qualifier may use variables and functions introduced in decls if Q is empty, we just write [e]

List Comprehension - Translation

[$\mathrm{x}+\mathrm{y} \mid \mathrm{x}<-$ [0..20], even x , let $\mathrm{y}=\mathrm{x} * \mathrm{x}, \mathrm{y}<200$]

- list comprehension is of form [e | Q] where qualifier is list of guards, generators and local definitions
- list comprehension is syntactic sugar, it is translated using the predefined function

```
concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f
```

- guards:

```
[e | b, Q] = if b then [e | Q] else []
```

- local declaration:

```
[e | let decls, Q] = let decls in [e | Q]
```

- generators for exhaustive patterns (e.g., variable or pair of variables):

```
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs
```

- generator (general case):

```
    [e | pat <- xs, Q] = concatMap
        (\ x -> case x of { pat -> [e | Q]; _ -> [] } )
        xs -- where x must be a fresh variable name
```


List Comprehension - Translation Examples

- translations
[e | b, Q] = if b then [e | Q] else []
[e | let decls, Q] = let decls in [e | Q]
[e | pat <- xs, Q] = concatMap (
- examples

$$
[s \mid(s, g)<-x s, g==1]
$$

$=$ concatMap ($\backslash(\mathrm{s}, \mathrm{g}) \rightarrow[\mathrm{s} \mid \mathrm{g}==1]) \mathrm{xs}$
$=$ concatMap ($\backslash(\mathrm{s}, \mathrm{g})$-> if $\mathrm{g}==1$ then [s] else []) xs
$[y+z \mid x<-x s, ~ l e t y=x * x, z<-[0 \ldots y]]$
$=$ concatMap ($\backslash \mathrm{x} \rightarrow \mathrm{c}[\mathrm{y}+\mathrm{z} \mid$ let $\mathrm{y}=\mathrm{x} * \mathrm{x}, \mathrm{z}<-$ [0 .. y]]) xs
$=$ concatMap ($\backslash \mathrm{x} \rightarrow$ let $\mathrm{y}=\mathrm{x} * \mathrm{x}$ in $[\mathrm{y}+\mathrm{z} \mid \mathrm{z}<-$ [0.. y]]) xs
= concatMap ($\backslash \mathrm{x} \rightarrow$ let $\mathrm{y}=\mathrm{x} * \mathrm{x}$ in
concatMap (\ z -> [y + z]) [0 .. y]) xs

Example Application - Pythagorean Triples

- (x, y, z) is Pythagorean triple iff $x^{2}+y^{2}=z^{2}$
- task: find all Pythagorean triples within given range

```
ptriple x y z = x^2 + y^2 == z^2
ptriples n = [ (x,y,z) |
    x <- [1..n], y <- [1..n], z <- [1..n], ptriple x y z]
```

- problem of duplicates because of symmetries

```
> ptriples 5
[(3,4,5), (4,3,5)]
```

- solution eliminates symmetries, also more efficient

```
ptriples n = [ (x,y,z) |
    x <- [1..n], y <- [x..n], z <- [y..n], ptriple x y z]
> ptriples 5
[(3,4,5)]
```


Application - Printing a Calendar

Printing a Calendar

- given a month and a year, print the corresponding calendar
- example: November 2023

Mo Tu We Th Fr Sa Su

		1	2	3	4	5
6	7	8	9	10	11	12

- decomposition identifies two parts
- construction phase (computation of days, leap year, ...)
- layout and printing
- we concentrate on printing, assuming machinery for construction
type Month = Int
type Year = Int
type Dayname = Int - Mo $=0, \mathrm{Tu}=1$, ... So $=6$
-- monthInfo returns name of 1 st day in m . and number of days in m . monthInfo :: Month -> Year -> (Dayname, Int)

The Picture Type

- encode calendar as a picture, i.e., a list of rows, where each row is a list of characters
- representation in Haskell
type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])
- consider (h, w, rs)
- rs :: [[Char]] - "list of rows"
- invariant 1: length of $r s$ is height h
- invariant 2: all rows (that is, lists in rs) have length w
- creation of a picture from a single row

```
row :: String -> Picture
row r = (1, length r, [r])
```


Stacking Pictures Above Each Other

Stacking Two Picture Above Each Other

```
above :: Picture -> Picture -> Picture
(h, w, CSS) `above` (h', W', CSS')
    | W == W' = (h + h', W, css ++ css')
    | otherwise = error "above: different widths"
```


Stacking Several Pictures Above Each Other

```
stack :: [Picture] -> Picture
stack = foldr1 above
```


Spreading Two Pictures Beside Each Other

```
beside :: Picture -> Picture -> Picture
(h, w, css) `beside` (h', w', css')
    | h == h' = (h, w + w', zipWith (++) css css')
    | otherwise = error "beside: different heights"
```


Spreading Several Pictures Beside Each Other

spread :: [Picture] -> Picture
spread $=$ foldr1 beside
Tiling Several Pictures

```
tile :: [[Picture]] -> Picture
tile = stack . map spread
```


Constructing a Month

- as indicated, assume function monthInfo :: Month -> Year -> (Dayname, Int) where daynames are 0 (Monday), 1 (Tuesday), ...

```
daysOfMonth :: Month -> Year -> [Picture]
daysOfMonth m y =
        map (row . rjustify 3 . pic) [1 - d .. numSlots - d]
```

 where
 \((d, t)=\) monthInfo \(m y\)
 numSlots \(=6 * 7--\max 6\) weeks \(* 7\) days per week
 pic \(\mathrm{n}=\) if \(1<=\mathrm{n} \& \& \mathrm{n}<=\mathrm{t}\) then show n else ""
 rjustify :: Int -> String -> String
rjustify n xs
| $1<=n=$ replicate ($n-1$) ' ' ++ xs
| otherwise = error ("text (" ++ xs ++ ") too long")
where 1 = length xs

Tiling the Days

- daysOfMonth delivers list of 42 single pictures (of size 1×3)
- missing: layout + header for final picture (of size 7×21)
month :: Month -> Year -> Picture
month m y = above weekdays . tile . groupsOfSize 7 \$ daysOfMonth m y where weekdays = row " Mo Tu We Th Fr Sa Su"

```
-- groupsOfSize splits list into sublists of given length
groupsOfSize :: Int -> [a] -> [[a]]
groupsOfSize n [] = []
groupsOfSize n xs = ys : groupsOfSize n zs
    where (ys, zs) = splitAt n xs
```


Printing a Month

- transform a Picture into a String
showPic :: Picture -> String
showPic (_, _, css) = unlines css
- show result of month m y as String
showMonth :: Month -> Year -> String
showMonth m y $=$ showPic $\$$ month m y
- display final string via putStr : : String -> IO () to properly print newlines and drop double quotes
> showMonth 112023

> putStr \$ showMonth 112023
Mo Tu We Th Fr Sa Su

		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

Summary

- versatile functions on lists: foldr, foldl, foldr1
- further useful functions on lists
take, drop, splitAt, takeWhile, dropWhile, span, zipWith, zip, unzip, (\$) , concatMap
-- split at position
-- split via predicate
-- (un)zip two lists
-- application operator
-- map with concat combined
- table of operator precedences
- list comprehension
- concise description of lists, similar to set comprehension in mathematics
- can automatically be translated into standard expressions based on concatMap
- example:

$$
\left[(x, y, z) \mid x<-[1 . . n], y<-[x . . n], z<-[y . . n], x \wedge 2+y^{\wedge} 2==z^{\wedge} 2\right]
$$

- calendar application

