

# Functional Programming 

Week 9 - Generic Fold, Scope, Modules

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

## Last Lecture - Library Functions

```
foldr :: (a -> b -> b) -> b -> [a] -> b -- also: foldr1, foldl
take, drop :: Int -> [a] -> [a]
splitAt :: Int -> [a] -> ([a], [a])
takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
span :: (a -> Bool) -> [a] -> ([a], [a])
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zip :: [a] -> [b] -> [(a, b)]
unzip :: [(a, b)] -> ([a], [b])
words, lines :: String -> [String]
unwords, unlines :: [String] -> String
concatMap :: (a -> [b]) -> [a] -> [b]
($) :: (a -> b) -> a -> b
```


## Last Lecture - List Comprehension

- list comprehension
- shape: [ ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ) | $\mathrm{x}<-$ [1..n], let $\mathrm{y}=\mathrm{x}$ - 2, $\mathrm{y}>100$, Just $\mathrm{z}<-\mathrm{f} \mathrm{y}$ ]
- consists of guards, generators, local declarations
- translated via concatMap
- examples

$$
\begin{aligned}
& \text { prime } \mathrm{n}=\mathrm{n}>=2 \& \& \text { null }[\mathrm{x} \mid \mathrm{x}<-[2 \ldots \mathrm{n}-1], \mathrm{n} \text { `mod` } \mathrm{x}==0] \\
& \text { ptriples } \mathrm{n}=[(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid \\
& \left.\quad \mathrm{x}<-[1 \ldots \mathrm{n}], \mathrm{y}<-[\mathrm{x} . \mathrm{n}], \mathrm{z}<-[\mathrm{y} . \mathrm{n}], \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2==\mathrm{z}^{\wedge} 2\right]
\end{aligned}
$$

## Further Example Applications: Sorting and Removing Duplicates

- example for list comprehension: quicksort

```
qsort [] = []
qsort (x : xs) =
    qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]
```

- example for fold and list comprehension: removing duplicates of a list

```
remdups = foldr (\ x xs -> [x | not $ x `elem` xs] ++ xs) []
```


# Fold on Arbitrary Datatypes 

## Fold on Arbitrary Datatypes

- recall foldr fe
- main idea: replace [] by e and every (:) by $f$
- generalize the idea of a fold to arbitrary datatypes fold replaces every $n$-ary constructor with a user-provided $n$-ary function
- examples
foldMaybe :: (a -> b) -> b -> Maybe a -> b
foldMaybe fe (Just x) = f $x$
foldMaybe $f$ e Nothing $=e$
foldEither :: (a -> c) -> (b -> c) -> Either a b -> c
foldEither $f$ g (Left x) = f x
foldEither $f$ g (Right $y$ ) $=$ g $y$


## Example: Fold on Arithmetic Expressions

```
data Expr v a = Number a | Var v | Plus (Expr v a) (Expr v a)
foldExpr :: (a -> b) -> (v -> b) -> (b -> b -> b) -> Expr v a -> b
foldExpr fn _ _ (Number x) = fn x
foldExpr _ fv _ (Var v) = fv v
foldExpr fn fv fp (Plus e1 e2) = fp (foldExpr fn fv fp e1) (foldExpr fn fv fp e2)
eval :: Num a => (v -> a) -> Expr v a -> a
eval v = foldExpr id v (+)
variables :: Expr v a -> [v]
variables = foldExpr (const []) (\ v -> [v]) (++) -- const x = \ _ -> x
substitute :: (v -> Expr w a) -> Expr v a -> Expr w a
substitute s = foldExpr Number s Plus
renameVars :: (v -> w) -> Expr v a -> Expr w a
renameVars r = substitute (Var . r)
countAdditions :: Expr v a -> Int
countAdditions = foldExpr (const 0) (const 0) ((+) . (+1))

\section*{Summary on Fold}
- a fold-function can be defined for most datatypes

\section*{fold replaces constructors by functions}
- after having programmed fold for an individual datatype, one can define many recursive algorithms just by suitable invocations of fold

\section*{Scope}

\section*{Scope}
- consider program (1 compile error)
radius = 15
area radius \(=\) pi^2 * radius
squares \(x=\left[x^{\wedge} 2 \mid x<-[0 \ldots x]\right]\)
length [] = 0
length (_:xs) = 1 + length xs
data Rat = Rat Integer Integer
createRat n d = normalize \(\$\) Rat n d where normalize.. . = ...
- scope
- need rules to resolve ambiguities
- scope defines which names of variables, functions, types, ... are visible at a given program position
- control scope to structure larger programs (imports / exports)
```

radius = 15

```
```

area radius = pi`2 * radius

```
- in the following we assume that name_i in the real code is always just name and the _i is used for addressing the different occurrences of name
- renamed Haskell program
```

radius_1 = 15

```
area_1 radius_2 = pi_1~2 * radius_3
- scope of names in right-hand sides of equations
- is radius_3 referring to radius_2 or radius_1?
- what is pi_1 referring to?
- rule of thumb for searching name: search inside-out
- think of abstract syntax tree of expression
- whenever you pass a let, where, case, or function definition where name is bound, then refer to that local name
- if nothing is found, then search global function name, also in Prelude
- radius_3 refers to radius_2, pi_1 to Prelude.pi

\section*{Local Names in Case-Expressions}
- general case: case expr of \{ pat1 -> expr1; ...; patN -> exprN \}
- each patI binds the variables that occur in patI
- these variables can be used in exprI
- the newly bound variables of patI bind stronger than any previously bound variables
- example Haskell expression
```

case xs_1 of -- renamed Haskell expression
[] -> xs_2
(x_1 : xs_3) -> case xs_4 ++ ys_1 of
[] -> ys_2
(x_2 : xs_5) -> x_3 : xs_6 ++ ys_3

```
- \(x_{-} 3\) refers to \(x_{-} 2\) (since \(x_{-} 2\) is further inside than \(x_{-} 1\) )
- xs_6 refers to xs_5 (since xs_5 is further inside than xs_3)
- xs_4 refers to xs_3
- xs_1, xs_2, ys_1, ys_2, and ys_3 are not bound in this expression (the proper references need to be determined further outside)

\section*{Local Names in Let-Expressions}
let \{
```

    pat1 = expr1; ...; patN = exprN;
    ```
    f1 pats1 = fexpr1; ...; fM patsM = fexprM
    \} in expr
- all variables in pat1 ... patN and all names \(f 1 \ldots f M\) are bound
- these can be used in expr, in each exprI and in each fexprJ
- variables of patsJ bind strongest, but only in fexprJ
- let \(\left(x_{-} 1, y_{-} 1\right)=\left(y_{\_} 2+1,5\right) \quad--\) renamed Haskell expression \(f_{-} 1 x_{-} 2=x_{-} 3+g_{-} 1 y_{-} 3\) id_1 \(g_{-} 2 y_{-} 4 f_{-} 2=f_{-} 3 \$ g_{-} 3 x_{-} 4 f_{-} 4\) in (f_5, g_4, x_5, y_5)
- y_2, y_3 and y_5 refer to y_1
- \(x_{-} 3\) refers to \(x_{-} 2\) since \(x_{-} 2\) binds stronger than \(x_{-} 1\)
- \(x_{-} 4\) and \(x_{-} 5\) refer to \(x_{-} 1\)
- \(f_{\_} 3\) and \(f \_4\) refer to \(f_{\_} 2\) since \(f \_2\) binds stronger than \(f \_1\)
- g_1, g_3 and g_4 refer to g_2
- f_5 refers to f_1
\(\bullet\) id 1 is not bound in this expression

\section*{Global Function Definitions}
- general case:
fname pats \(=\) expr
- all variables in pats are bound locally and can be used in expr
- fname is not locally bound, but added to global lookup table
- all variables/names in expr without local reference will be looked up in global lookup table
- lookup in global table does not permit ambiguities
- radius_1 = 15
-- renamed Haskell program
area_2 radius_2 = pi_1~2 * radius_3
length_1 [] = 0
length_2 (_:xs_1) = 1 + length_3 xs_2
- radius_1, area_2 and length_1/2 are stored in global lookup table
- global lookup table has ambiguity: length_1/2 vs. Prelude. length
- pi_1 is not locally bound and therefore refers to Prelude.pi
- radius_3 refers to local radius_2 and not to global radius_1
- xs_2 refers to xs_1
- length_3 is not locally bound and because of mentioned ambiguity, this leads to a compile error
```

Global vs. Local Definitions
length :: [a] -> Int
-- choose definition 1,
length = foldr (const (1 +)) 0
-- definition 2,
length =
let { length [] = 0; length (x : xs) = 1 + length xs }
in length
-- or definition 3
length [] = 0
length (_ : xs) = 1 + length xs

```
- definitions 1 and 2 compile since there is no length in the rhs that needs a global lookup
- in contrast, definition 3 does not compile
- still definitions 1 and 2 result in ambiguities in global lookup table \(\rightarrow\) study Haskell's module system

\section*{Modules}

\section*{Modules}
- so far
- Haskell program is a single file, consisting of several definitions
- all global definitions are visible to user
-- functions on rational numbers
data Rat = Rat Integer Integer -- internal definition of datatype
normalize (Rat \(n\) d) \(=\)-. internal function
createRat \(n\) d = normalize \$ Rat \(n\) d -- function for external usage
-- application: approximate pi to a certain precision
piApprox : : Integer -> Rat
piApprox \(p=\ldots\)
- motivation for modules
- structure programs into smaller reusable parts without copying
- distinguish between internal and external definitions
- clear interface for users of modules
- maintain invariants
- improve maintainability

\section*{Modules in Haskell}
-- first line of file ModuleName.hs
module ModuleName(exportList) where
-- standard Haskell type and function definitions
- each ModuleName has to start with uppercase letter
- each module is usually stored in separate file ModuleName.hs
- if Haskell file contains no module declaration, ghci inserts module name Main
- exportList is comma-separated list of function-names and type-names, these functions and types will be accessible for users of the module
- if (exportList) is omitted, then everything is exported
- for types there are different export possibilities
- module Name(Type) exports Type, but no constructors of Type
- module Name(Type(..)) exports Type and its constructors

\section*{Example: Rational Numbers}
```

module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer
normalize = ...
createRat n d = normalize \$ Rat n d
numerator (Rat n d) = n
instance Num Rat where ...
instance Show Rat where ...

```
- external users know that a type Rat exists
- they only see functions createRat, numerator and denominator
- they don't have access to constructor Rat and therefore cannot form expressions like Rat 24 which break invariant of cancelled fractions
- they can perform calculations with rational numbers since they have access to (+) of class Num, etc., in particular for the instance Rat
- for the same reason, they can display rational numbers via show

\section*{Example: Rational Numbers - Improved Implementation} since external users cannot form expressions likes Rat 2 4, we may assume that only normalized rational numbers appear as input, provided that our implementation in this module obeys the invariant
```

module Rat(Rat, createRat, numerator, denominator) where
data Rat = Rat Integer Integer
deriving Eq -- sound because of invariant
instance Show Rat where -- no normalization required
show (Rat n d) = if d == 1 then show n else show n ++ "/" ++ show d
normalize = ...
createRat n d = normalize \$ Rat n d
instance Num Rat where
-- for negation no further normalization required
negate (Rat n d) = Rat (- n) d
-- multiplication requires normalization to obey invariant
Rat n1 d1 * Rat n2 d2 = createRat (n1 * n2) (d1 * d2)

```

\section*{Example: Application}
```

module PiApprox(piApprox, Rat) where
-- Prelude is implicitly imported
-- import everything that is exported by module Rat
import Rat
-- or only import certain parts
import Rat(Rat, createRat)
-- import declarations must be before other definitions
piApprox :: Integer -> Rat
piApprox n = let initApprox = createRat 314 100 in ...

```
- there can be multiple import declarations
- what is imported is not automatically exported
- when importing PiApprox, type Rat is visible, but createRat is not
- if application requires both Rat and PiApprox, import both modules:
import PiApprox
import Rat

\section*{Resolving Ambiguities}
```

-- Foo.hs
module Foo where pi = 3.1415
-- Problem.hs
module Problem where
import Foo
pi = 3.1415
area r = pi * r^2

```
- problem: what is pi in definition of area? (global name)
- lookup map is ambiguous: pi defined in Prelude, Foo, and Problem
- ambiguity persists, even if definition is identical
- solution via qualifier: disambiguate by using ModuleName. name instead of name
- write area \(r=\) Problem.pi * \(r^{\wedge} 2\) in Problem.hs (or area \(r=\) Prelude.pi \(* r^{\wedge} 2\) )

\section*{Qualified Imports}
module Foo where pi \(=3.1415\)
module SomeLongModuleName where fun \(\mathrm{x}=\mathrm{x}+\mathrm{x}\)
module ExampleQualifiedImports where
```

-- all imports of Foo have to use qualifier
import qualified Foo
-- result: no ambiguity on unqualified "pi"

```
import qualified SomeLongModuleName as S
-- "as"-syntax changes name of qualifier
area \(r=p i * r^{\wedge} 2\)
myfun \(\mathrm{x}=\mathrm{S} . f \mathrm{f}\) ( \(\mathrm{x} * \mathrm{x}\) )

\section*{Summary}

\section*{Summary}
- scoping rules determine visibility of function names and variable names
- larger programs can be structured in modules
- explicit export-lists to distinguish internal and external parts
- advantage: changes of internal parts of module \(M\) are possible without having to change code that imports \(M\), as long as exported functions of \(M\) have same names and types
- if no module name is given: Main is used as module name
- further information on modules
https://www.haskell.org/onlinereport/modules.html```

