
WS 2023/2024

Functional Programming
Week 10 – Input and Output, Connect Four

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

Last Lecture
• scoping rules determine visibility of function names and variable names
• larger programs should be structured in modules

• explicit export-lists to distinguish internal and external parts
• import of modules instead of copying code
• qualified imports and qualifiers are useful for resolving name conflicts
• defaults

• if program does not contain module declaration, module Main where is added
• import Prelude is implicitly added, if no other imports of Prelude are present

• example

module Rat(Rat,createRat) where ...

module Application where

import Prelude hiding (pi) -- hide import of pi

import Rat

pi :: Rat -- so that here there won't be a conflict

pi = createRat -- pi with precision of 70 digits

31415926535897932384626433832795028841971693993751058209749445923078164

100
RT et al. (DCS @ UIBK) Week 10 2/28

Input and Output in Haskell

RT et al. (DCS @ UIBK) Week 10 3/28

I/O: Input and Output

• aim: communicate with the user
• ask user for inputs
• print answers
• outside the GHCI read-eval-print-loop
• stand-alone programs that neither require ghc-installation nor Haskell knowledge of user

• I/O is not restricted to text-based user-I/O
• reading and writing of files

(e.g., compiler translates .hs to .exe, or .tex to .pdf)
• reading and writing into memory

(mutable state, arrays)
• reading and writing of network channels

(e.g., web-server and internet-browser)
• start other programs and communicate with them
• play/record sound, capture mouse-movements, . . .

RT et al. (DCS @ UIBK) Week 10 4/28

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

An Initial Example

• main = do -- file: welcomeIO.hs

putStrLn "Greetings! Please tell me your name."

name <- getLine

putStrLn $ "Welcome to Haskell's IO, " ++ name ++ "!"

• compile it with GHC (not GHCI) via

$ ghc --make welcomeIO.hs

• and run it
$./welcomeIO # welcomeIO.exe on Windows

Greetings! Please tell me your name.

Homer # this was typed in

Welcome to Haskell's IO, Homer!

• notes
• putStrLn – prints string followed by newline
• getLine – reads line from standard input
• new syntax: do and <-

RT et al. (DCS @ UIBK) Week 10 5/28

I/O and the Type System

• consider
ghci> :l welcomeIO.hs

ghci> :t putStrLn

putStrLn :: String -> IO ()

ghci> :t getLine

getLine :: IO String

ghci> :t main

main :: IO ()

• IO a is type of I/O actions delivering results of type a
(in addition to their I/O operations)

• examples
• String -> IO () – after supplying a string, we obtain an I/O action

(in case of putStrLn, “printing”)
• IO () – just perform I/O (in case of main, run our program)
• IO String – do some I/O and deliver a string (in case of getLine, user-input)

RT et al. (DCS @ UIBK) Week 10 6/28

Combining I/O Actions
• I/O actions can be combined

• core building block: bind (syntax >>=)
(>>=) :: IO a -> (a -> IO b) -> IO b

• consider act1 >>= \ x -> act2
• on evaluation, this expressions first performs action act1
• the result of action act1 is stored in x
• afterwards action act2 is performed (which may depend on x)
• in total, both actions are performed and the result is that of act2

• ignoring results: (>>) :: IO a -> IO b -> IO b, a1 >> a2 = a1 >>= _ -> a2

• example
putStrLn "Hi. What's your name?" >> -- ignore result, which is ()

getLine >>= \ name -> -- store result in variable name

let answer = "Hello " ++ name in -- no I/O in this line

putStrLn answer -- final result from putStrLn: ()

• the type of overall expression is IO (), that of the last I/O action putStrLn answer
• execution of actions is sequential, like in imperative programming

RT et al. (DCS @ UIBK) Week 10 7/28

Do-Notation
• there is special syntax for combinations of binds, lambdas and lets
do x <- act = act >>= \ x -> do block

block

do act = act >> do block

block

do let x = e = let x = e in do block

block

• putStrLn "Hi. What's your name?" >>

getLine >>= \ name ->

let answer = "Hello " ++ name in

putStrLn answer

can be written as

do putStrLn "Hi. What's your name?"

name <- getLine

let answer = "Hello " ++ name -- no "in"!

putStrLn answer

• as in let-syntax, do-blocks can also written via do {..; ..; ..}
RT et al. (DCS @ UIBK) Week 10 8/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Further Notes

• inside do-block, order is important; I/O actions are executed in order of appearance;
result of block is result of last action

• x <- a is not available outside I/O actions,
in particular there is no function of type IO a -> a which extracts the results of an
action (of type IO a) without being an action itself (result type a)

• once we are inside an IO action, we cannot escape
• strict separation between purely functional code and I/O
• when IO a does not appear inside type signature, we can be absolutely sure that no I/O

(“side-effect”) is performed

• main :: IO () is the I/O action that is executed when running a compiled file via
ghc --make prog.hs and then ./prog

(prog.hs must contain a module Main that exports main)

RT et al. (DCS @ UIBK) Week 10 9/28

Using Purely Functional Code Inside I/O Actions

-- reply is purely functional: no IO in type

reply :: String -> String

reply name =

"Pleased to meet you, " ++ name ++ ".\n" ++

"Your name contains " ++ n ++ " characters."

where n = show $ length name

-- pure code can be invoked from I/O-part

main :: IO ()

main = do

putStrLn "Greetings again. What's your name?"

name <- getLine

let niceReply = reply name

putStrLn niceReply

• invoking purely functional code inside I/O is easy

• the other direction is not possible

RT et al. (DCS @ UIBK) Week 10 10/28

Some Predefined I/O Functions

• return :: a -> IO a – turn anything into an I/O action which does nothing

• System.Environment.getArgs :: IO [String] – get command line arguments

• putChar :: Char -> IO () – print character

• putStr :: String -> IO () – print string

• putStrLn :: String -> IO () – print string followed by newline

• getChar :: IO Char – read single character from stdin

• getLine :: IO String – read line (no newline-character in result)

• interact :: (String -> String) -> IO () – use function that gets input as string
and produces output as string

• type FilePath = String

• readFile :: FilePath -> IO String – read file content

• writeFile :: FilePath -> String -> IO ()

• appendFile :: FilePath -> String -> IO ()

RT et al. (DCS @ UIBK) Week 10 11/28

Recursive I/O Actions

• branching and recursion is also possible with I/O actions

• example: implement getLine via getChar

import Prelude hiding (getLine)

getLine = do

c <- getChar

if c == '\n' -- branching

then return ""

else do

l <- getLine -- recursion

return $ c : l

RT et al. (DCS @ UIBK) Week 10 12/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples – Imitating Some GNU Commands

• cat.hs – print file contents
import System.Environment (getArgs)

main = do

[file] <- getArgs -- assume there is exactly one file

s <- readFile file

putStr s

• wc.hs – count number of lines/words/characters in input
count s = nl ++ " " ++ nw ++ " " ++ nc ++ "\n"

where nl = show $ length $ lines s

nw = show $ length $ words s

nc = show $ length s

main = interact count

• sort.hs – sort input lines
import Data.List (sort)

main = interact (unlines . sort . lines)

RT et al. (DCS @ UIBK) Week 10 13/28

Laziness and I/O Actions

• consider a simple copying program
main = do -- imports omitted

[src, dest] <- getArgs

s <- readFile src

writeFile dest s
• readFile and writeFile are lazy, e.g., readFile only reads characters on demand
• positive effect: large files can be copied without fully loading them into memory

• laziness might lead to problems
main = do -- imports omitted

[file] <- getArgs

s <- readFile file

writeFile file (map toUpper s)
• since readFile is lazy, when executing s <- readFile file nothing is read immediately
• but then the same file should be opened for writing; conflict, which will result in error
• solution: more fine-grained control via file-handles which explicitly open and close files, see

lecture Operating Systems

RT et al. (DCS @ UIBK) Week 10 14/28

Higher-Order on I/O Actions

• foreach :: [a] -> (a -> IO b) -> IO ()

foreach [] io = return ()

foreach (a:as) io = do { io a; foreach as io }

• better cat.hs

main = do

files <- getArgs

if null files then interact id else do

foreach files readAndPrint

where readAndPrint file = do

s <- readFile file

putStr s

RT et al. (DCS @ UIBK) Week 10 15/28

Example Application: Connect Four

RT et al. (DCS @ UIBK) Week 10 16/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Connect Four
• aim: implement Connect Four, MB Spiele

• with textual user interface
0123456

.......

.XO.X..

.XOOOXO

XOXOXOX

OXXOXOO

XXOXOOX

Player X to go

Choose one of [0,1,2,3,4,5,6]

RT et al. (DCS @ UIBK) Week 10 17/28

Connect Four: Implementation

• clear separation between
• user interface (I/O)

• ask for a move
• print the current state
• . . .

• game logic (purely functional code)
• type to represent a state (board + next player)
• perform a move
• check for a winner
• display a state as string
• . . .

• each part is written as a separate module
• Logic contains the game logic
• Main contains the user interface and the main function

RT et al. (DCS @ UIBK) Week 10 18/28

Game Logic: Interface

• types: State, Move and Player

• constant initState :: State

• function showPlayer :: Player -> String

• function showState :: State -> String

• function winningPlayer :: State -> Maybe Player

• function validMoves :: State -> [Move]

• function dropTile :: Move -> State -> State

• in total

module Logic(State, Move, Player,

initState, showPlayer, showState,

winningPlayer, validMoves, dropTile) where

... -- details, which the user interface doesn't have to know

RT et al. (DCS @ UIBK) Week 10 19/28

The Read-Class

• class Read provides methods to convert Strings into other types
• read :: Read a => String -> a
• readMaybe :: Read a => String -> Maybe a

import of module Text.Read required
• when using read, often the type a has to be chosen explicitly
• examples

• (read "(41, True)" :: (Integer,Bool)) = (41, True)
• (read "(41, True)" :: (Integer,Integer)) = error ...
• (readMaybe "1" :: Maybe Integer) = Just 1
• (readMaybe "one" :: Maybe Integer) = Nothing

• for the Logic module, we assume that the type Move is an instance of Show and Read

RT et al. (DCS @ UIBK) Week 10 20/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

User Interface

module Main(main) where -- module name must be "Main" for compilation

import Logic

main = do

putStrLn "Welcome to Connect Four"

game initState

game state = do

putStrLn $ showState state

case winningPlayer state of

Just player -> putStrLn $ showPlayer player ++ " wins!"

Nothing -> let moves = validMoves state in

if null moves then putStrLn "Game ends in draw."

else do

putStr $ "Choose one of " ++ show moves ++ ": "

hFlush stdout -- flush print buffer

moveStr <- getLine

let move = (read moveStr :: Move)

game (dropTile move state)
RT et al. (DCS @ UIBK) Week 10 21/28

Game Logic: Encoding a State and Initial State

type Tile = Int -- 0, 1, or 2

type Player = Int -- 1 and 2

type Move = Int -- column number

data State = State Player [[Tile]] -- list of rows

empty :: Tile

empty = 0

numRows, numCols :: Int

numRows = 6

numCols = 7

startPlayer :: Player

startPlayer = 1

initState :: State

initState = State startPlayer

(replicate numRows (replicate numCols empty))

RT et al. (DCS @ UIBK) Week 10 22/28

Game Logic: Valid Moves and Displaying a State

validMoves :: State -> [Move]

validMoves (State _ rows) =

map fst . filter ((== empty) . snd) . zip [0 .. numCols - 1] $ head rows

showPlayer :: Player -> String

showPlayer 1 = "X"

showPlayer 2 = "O"

showTile :: Tile -> Char

showTile t = if t == empty then '.' else head $ showPlayer t

showState :: State -> String

showState (State player rows) = unlines $

map (head . show) [0 .. numCols - 1] :

map (map showTile) rows

++ ["\nPlayer " ++ showPlayer player ++ " to go"]

RT et al. (DCS @ UIBK) Week 10 23/28

Game Logic: Making a Move

otherPlayer :: Player -> Player

otherPlayer = (3 -)

dropTile :: Move -> State -> State

dropTile col (State player rows) = State

(otherPlayer player)

(reverse $ dropAux $ reverse rows)

where

dropAux (row : rows) =

case splitAt col row of

(first, t : last) ->

if t == empty

then (first ++ player : last) : rows

else row : dropAux rows

RT et al. (DCS @ UIBK) Week 10 24/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Game Logic: Winning Player

winningRow :: Player -> [Tile] -> Bool

winningRow player [] = False

winningRow player row = take 4 row == replicate 4 player

|| winningRow player (tail row)

transpose ([] : _) = []

transpose xs = map head xs : transpose (map tail xs)

winningPlayer :: State -> Maybe Player

winningPlayer (State player rows) =

let prevPlayer = otherPlayer player

longRows = rows ++ transpose rows -- ++ diags rows

in if any (winningRow prevPlayer) longRows

then Just prevPlayer

else Nothing

RT et al. (DCS @ UIBK) Week 10 25/28

Connect Four: Final Remarks

• implementation is quite basic
• diagonal winning-condition missing
• crashes when invalid moves are entered
• no iterated matches

• exercise: improve implementation

RT et al. (DCS @ UIBK) Week 10 26/28

Summary

RT et al. (DCS @ UIBK) Week 10 27/28

Summary

• in Haskell I/O is possible, IO a is type of I/O-actions with result of type a

• clear separation between purely functional and I/O-code

• multiple actions can be connected via (>>=) or do-blocks

• several predefined functions to access I/O

• more information on I/O in Haskell:
http://book.realworldhaskell.org/read/io.html

• Read class provides method read :: String -> a, opposite to Show

• connect four: separate implementation of game logic (pure) and user interface (I/O)

RT et al. (DCS @ UIBK) Week 10 28/28

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://book.realworldhaskell.org/read/io.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Input and Output in Haskell
	
	Example Application: Connect Four
	
	Summary

