
WS 2023/2024

Functional Programming
Week 11 – Lazy Evaluation, Infinite Lists

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/


Last Lecture

• IO a is type of I/O-actions with resulting type a

• do-blocks are used for sequential composition of I/O-actions

• clear separation between purely functional and I/O-code:
• embed functional code into I/O: return :: a -> IO a
• the other direction is not available: no function of type IO a -> a

• ghc compiles programs that provide main :: IO () function in module Main
• example application: connect four

• user-interface: I/O-code
• game logic: purely functional

RT et al. (DCS @ UIBK) Week 11 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Monads

• bind (>>=), return, and do-notation are not restricted to I/O

• there exists a more general concept of monads

• example: also the Maybe-type is a monad

data Expr = Const Double | Div Expr Expr

eval :: Expr -> Maybe Double

eval (Const c) = return c

eval (Div expr1 expr2) = do

x1 <- eval expr1

x2 <- eval expr2

if x2 == 0

then Nothing

else return (x1 / x2)

• monads won’t be covered here, but they are the reason why the Haskell literature speaks
about the I/O-monad

RT et al. (DCS @ UIBK) Week 11 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Evaluation Strategies

RT et al. (DCS @ UIBK) Week 11 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Pure Functions

• a function is pure if it always returns same result on same input

• pure functions are similar to mathematical functions
• examples of pure functions

• addition
• sort a list
• . . .

• examples of non-pure functions
• roll a dice
• current time
• position of cursor
• . . .

• pure languages permit to define only pure functions

• Haskell is a pure language

RT et al. (DCS @ UIBK) Week 11 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Pure Functions and I/O

• even I/O is pure in Haskell

• consider main = getLine >>= putStrLn . ("Hello " ++)

• it seems that the result depends on user input, so is not pure

• however main :: IO (), so the functional value of main is not what is entered and
printed during execution, but the value is of type IO (), i.e., a sequence of actions that
are executed when running the program; and indeed this sequence is always the same:

first read some input i and then print the string "Hello i"

• alternative argumentation: interpret type IO a a state transformer on the outside world,
e.g., as a function of type RealWorld -> (RealWorld, a)

• remark: in the remainder of this lecture we will only consider purely functional programs
without I/O

RT et al. (DCS @ UIBK) Week 11 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Evaluation Order
• there are several ways to evaluate expressions, consider square x = x * x

square (5 + 3)

square 8

8 * 8

64

(5 + 3) * (5 + 3)

8 * (5 + 3) (5 + 3) * 8

• in pure languages, the evaluation order has no impact on resulting normal form

• normal form: an expression that cannot be evaluated further, a result

Theorem

Whenever there are two (different) ways to evaluate a Haskell expression to normal form, then
the resulting normal forms are identical.

RT et al. (DCS @ UIBK) Week 11 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Standard Evaluation Strategies
• each functional language fixes the evaluation order via some evaluation strategy
• three prominent evaluation strategies (expressions represented as trees and dags)

• call-by-value / strict / innermost: first evaluate arguments

square (5+3) =

square

+

5 3

=

square

8 =

*

8 8 = 64

• call-by-name / non-strict / outermost: directly replace function application by rhs

square (5+3) =

square

+

5 3

=

*

+

5 3

+

5 3

=

*

+

5 3

8 =

*

8 8 = 64

• call-by-need / lazy evaluation: like call-by-name + sharing (dags = directed acyclic graphs)

square (5+3) =

square

+

5 3

=

*

+

5 3

=

*

8 = 64

RT et al. (DCS @ UIBK) Week 11 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Evaluation Strategy of Haskell

• Haskell uses lazy evaluation with left-to-right argument order

• sharing is applied whenever a variable occurs multiple times
• example: consider definition f x = g x + g (3 + 5) + x

• when evaluating f (1 + 2) = g (1 + 2) + g (3 + 5) + (1 + 2) the two occurrences
of 1 + 2 are shared: they use the same variable x

• when evaluating f (3 + 5) = g (3 + 5) + g (3 + 5) + (3 + 5) the two occurrences
of g (3 + 5) are not shared: it was a coincidence that x was substituted by 3 + 5 and this
equality is not detected at runtime

• there might be further sharing (depending on the compiler), e.g. sharing common
subexpressions such as the expression g x in a function definition f x = g x + h (g x)

• argument evaluation within function invocation f expr1 ... exprN is mainly triggered
by pattern matching, i.e., the process of finding the suitable defining equation
f pat1 ... patN = expr, cf. slides 13 and 15 of week 3

• many builtin arithmetic functions will trigger evaluation of all arguments, e.g.,
(0 :: Integer) * undefined will result in error, and not in 0

RT et al. (DCS @ UIBK) Week 11 9/25

http://cl-informatik.uibk.ac.at/teaching/ws23/fp//slides/03x1.pdf#page=13
http://cl-informatik.uibk.ac.at/teaching/ws23/fp//slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Evaluation Strategy and Termination

• consider the following Haskell script
three :: Integer -> Integer

three x = 3

inf :: Integer

inf = 1 + inf

• strict evaluation does not terminate, i.e., it will evaluate forever
three inf = three (1 + inf) = three (1 + (1 + inf)) = ...

• non-strict and lazy evaluation are immediately done
three inf = 3

Theorem

• if the evaluation of an expression terminates for some evaluation strategy, then it
terminates using non-strict or lazy evaluation

• if the evaluation of an expression terminates using strict evaluation, then it terminates for
every evaluation strategy

RT et al. (DCS @ UIBK) Week 11 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Comparison of Evaluation Strategies

• call-by-value
• easy to understand
• easy to implement
• overhead in evaluating non-required expressions
• used in many functional programming languages

• lazy evaluation
• harder to understand
• single evaluation step is more complicated to implement:

pass arguments that are unevaluated expressions (thunks) instead of just values
• overhead in computing with thunks
• allows programmers to naturally define and work with infinite data
• used in Haskell

RT et al. (DCS @ UIBK) Week 11 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Tail Recursion and Strict Evaluation

RT et al. (DCS @ UIBK) Week 11 12/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Different Kinds of Recursion

• a function calling itself is recursive

• functions that mutually call each other are mutually recursive

even n | n == 0 = True

| otherwise = odd (n - 1)

odd n | n == 0 = False

| otherwise = even (n - 1)

• nested recursion: recursive calls inside recursive calls

ack n m | n == 0 = m + 1

| m == 0 = ack (n - 1) 1

| otherwise = ack (n - 1) (ack n (m - 1))

• linear recursion: at most one recursive call (per if-then-else branch)
• fib n | n >= 2 = fib (n - 1) + fib (n - 2) ✘
• length (x : xs) = 1 + length xs ✔
• f x = if even x then f (x `div` 2) else f (3 * x + 1) ✔

• tail recursion and guarded recursion will be discussed in more detail

RT et al. (DCS @ UIBK) Week 11 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Tail Recursion

• tail recursion is special form of linear recursion
• additional requirement

• recursive function calls happen at the outermost level
• however, they can be within an if-then-else

• examples
• length (x : xs) = 1 + length xs ✘
• f x = if even x then f (x `div` 2) else f (3 * x + 1) ✔

• advantage of tail recursion
• no dangling function calls
• can be evaluated as loop
• space efficient

RT et al. (DCS @ UIBK) Week 11 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example: Advantage of Tail Recursion
• linear but not tail recursive variant
sumRec 0 = 0

sumRec n = n + sumRec (n - 1)

sumRec 5 = 5 + sumRec (5 - 1)

= 5 + sumRec 4 = 5 + (4 + sumRec (4 - 1))

= 5 + (4 + sumRec 3) = 5 + (4 + (3 + sumRec (3 - 1))) = ...

= 5 + (4 + (3 + (2 + (1 + 0)))) = ... = 15 -- linear space

• tail recursive variant using accumulator to store intermediate results
sumTr n = aux 0 n where

aux acc 0 = acc

aux acc n = aux (acc + n) (n - 1)

sumTr 5

= aux 0 5 = aux (0 + 5) (5 - 1)

= aux 5 4 = aux (5 + 4) (4 - 1)

= aux 9 3 = ... = 15

-- constant space, implement as loop with two variables: acc and n
RT et al. (DCS @ UIBK) Week 11 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Problem of Tail Recursion using Lazy Evaluation

sumTr n = aux 0 n where

aux acc 0 = acc

aux acc n = aux (acc + n) (n - 1)

• example evaluation of sumTr on previous slide used call-by-value

• in lazy evaluation acc and n are only evaluated on demand

• causes linear memory consumption in sumTr
sumTr 5 -- with lazy evaluation

= aux 0 5

= aux (0 + 5) (5 - 1)

= aux (0 + 5) 4

= aux ((0 + 5) + 4) (4 - 1)

= ...

= aux (((((0 + 5) + 4) + 3) + 2) + 1) 0

= ((((0 + 5) + 4) + 3) + 2) + 1 = ... = 15

RT et al. (DCS @ UIBK) Week 11 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Enforcing Evaluation

• Haskell function to enforce evaluation: seq :: a -> b -> b

• evaluation of seq x y first evaluates x to WHNF and then returns y

• WHNF: weak head normal form
• expression e is in WHNF iff it has one of the following three shapes

• e = C expr1 ... exprN for some constructor C (constructor application)
• e = f expr1 ... exprN if the defining equations of f have M > N arguments, i.e., they

are of the form f pat1 ... patM = expr (too few arguments)
• e = \ pat1 ... patN -> expr (λ-abstraction)

• examples
• in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),
(++ undefined), \ x -> undefined

• not in WHNF: [1] ++ [2], (\ x -> x + 1) (1 + 2), undefined ++ undefined
• evaluation: let x = 1 + 2 in seq x (f x)

= seq (1 + 2) (f (1 + 2)) -- with 1 + 2 shared

= seq 3 (f 3) -- seq enforced evaluation of argument

= f 3 = ... -- evaluation of f 3 continues

RT et al. (DCS @ UIBK) Week 11 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Application using seq

• solve memory problem in tail recursion by enforcing evaluation of accumulator
sumTrSeq n = aux 0 n where

aux acc 0 = acc

aux acc n = let accN = acc + n in seq accN (aux accN (n - 1))

sumTrSeq 5

= aux 0 5

= let accN = 0 + 5 in seq accN (aux accN (5 - 1))

= seq (0 + 5) (aux (0 + 5) (5 - 1)) -- 0 + 5 is shared

= seq 5 (aux 5 (5 - 1)) -- and evaluated

= aux 5 (5 - 1)

= aux 5 4 -- pattern matching triggers evaluation

= let accN = 5 + 4 in seq accN (aux accN (4 - 1))

= seq (5 + 4) (aux (5 + 4) (4 - 1)) -- 5 + 4 is shared

= seq 9 (aux 9 (4 - 1)) -- and evaluated

= aux 9 (4 - 1) -- same structure as above

= ... = 15 -- constant space

RT et al. (DCS @ UIBK) Week 11 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Enforcing Strict Evaluation . . . Continued

• besides seq, there are other options to enforce strict evaluation

• strict library functions like a strict version of foldl:
Data.List.foldl' :: (b -> a -> b) -> b -> [a] -> b

import Data.List

length = foldl' (\ x _ -> x + 1) 0

• pattern matching with bang patterns to enforce evaluation, e.g.,
aux acc n = let !accN = acc + n in aux accN (n - 1)

• strict datatypes

• see https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/
strict.html for further details

RT et al. (DCS @ UIBK) Week 11 19/25

https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/strict.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Lazy Evaluation and Infinite Lists

RT et al. (DCS @ UIBK) Week 11 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Guarded Recursion

• every recursive call is inside (“guarded by”) a constructor

• also known as “tail recursion modulo cons”

• more important than tail recursion in Haskell

• allows the result to be consumed lazily – tail recursion provides the result only at the end
• examples

• map f [] = []

map f (x:xs) = f x : map f xs ✔
• reverse xs = revAux xs [] where

revAux [] ys = ys ✘
revAux (x : xs) ys = revAux xs (x : ys)

• enumFrom x = x : enumFrom (x + 1) ✔

• remarks on enumFrom
• above definition is simplified, actual definition works for members of type class Enum, e.g.,
Int, Char, Integer, Double, . . . and prevents overflows

• syntactic sugar: [x..] = enumFrom x

RT et al. (DCS @ UIBK) Week 11 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Infinite Lists
• infinite lists ∼ sequences of elements (also known as streams)

• programming with infinite lists: producing and consuming elements of sequences one
after another (e.g., with guarded recursion)

• example: [x..] = x : [x + 1 ..] generates infinite list

• in combination with lazy evaluation, infinite lists do not always cause non-termination

• examples
take 2 [7..]

= take 2 (7 : [8..])

= 7 : take 1 [8..]

= 7 : 8 : take 0 [9..]

= [7, 8]

takeWhile (< 95) $ map (\ x -> x * x) [0..]

= ... = [0,1,4,9,16,25,36,49,64,81]

filter (< 100) $ map (\ x -> x * x) [0..]

= ... = [0,1,4,9,16,25,36,49,64,81 -- interrupted
RT et al. (DCS @ UIBK) Week 11 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Laziness and Infinite Data Structures Facilitate Modularity

• separation of concerns
• write small functions with specific tasks
• use potentially infinite data structures

• example: find index of first list element satisfying predicate
• function firstIndex :: (a -> Bool) -> [a] -> Int
• in Haskell
firstIndex p = fst . head . filter (p . snd) . zip [0..]

• (lazy) evaluation (without showing expansion of (.) and ($))
firstIndex (== 1) [1..9]

= fst . head . filter ((== 1) . snd) $ zip [0..] [1..9]

= fst . head . filter ((== 1) . snd) $ (0,1) : zip [1..] [2..9]

= fst . head $ (0,1) : filter ((== 1) . snd) $ zip [1..] [2..9]

= fst (0,1)

= 0
• without laziness several complete list traversals are required when using library functions

(e.g., computation of length and addition of indices)
• remark: firstIndex works for arbitrary lists as input: finite and infinite

RT et al. (DCS @ UIBK) Week 11 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Sieve of Eratosthenes

• goal: generate list of all prime numbers
• algorithm

1. start with list of all natural numbers (from 2 on)

2. mark first element x as prime
3. remove all multiples of x
4. go to Step 2

• in Haskell

primes :: [Integer]

primes = sieve [2..] where

sieve (x : xs) = x : sieve (filter (\ y -> y `mod` x /= 0) xs)

> take 1000 primes -- the first 1000 primes

> takeWhile (< 1000) primes -- all primes below 1000

RT et al. (DCS @ UIBK) Week 11 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary

• in pure functional languages such as Haskell the result does not depend on the evaluation
strategy

• different kinds of recursion

• tail recursion is usually efficient as it can be implemented as loop

• seq can be used to enforce strict evaluation (in particular of accumulators)

• lazy evaluation allows modeling of infinite lists

• guarded recursion is important for algorithms on infinite lists

• infinite lists permit to naturally formulate several algorithms
(without having to take care of boundary conditions)

RT et al. (DCS @ UIBK) Week 11 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Evaluation Strategies
	
	Tail Recursion and Strict Evaluation
	
	Lazy Evaluation and Infinite Lists
	

