M universitat WS 2023/2024
W innsbruck

Last Lecture

I0 a is type of I/O-actions with resulting type a

do-blocks are used for sequential composition of 1/O-actions

® clear separation between purely functional and I/O-code:

® embed functional code into I/O: return :: a -> I0 a
® the other direction is not available: no function of type I0 a -> a

® ghc compiles programs that provide main :: I0 () function in module Main
. . ® example application: connect four
Functional Programming b app
® user-interface: 1/O-code
Week 11 — Lazy Evaluation, Infinite Lists ® game logic: purely functional
René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner
Department of Computer Science
RT et al. (DCS @ UIBK) Week 11 2/25

Monads
® bind (>>=), return, and do-notation are not restricted to /0
® there exists a more general concept of monads
® example: also the Maybe-type is a monad
data Expr = Const Double | Div Expr Expr

eval :: Expr -> Maybe Double Evaluation Strategies
eval (Const c) = return c
eval (Div exprl expr2) = do
x1l <- eval expri
x2 <- eval expr2
if x2 ==
then Nothing
else return (x1 / x2)
® monads won't be covered here, but they are the reason why the Haskell literature speaks
about the 1/0-monad

RT et al. (DCS @ UIBK) Week 11 3/25 RT et al. (DCS @ UIBK) Week 11 4/25

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Pure Functions

® 3 function is pure if it always returns same result on same input
® pure functions are similar to mathematical functions
® examples of pure functions
® addition
® sort a list
° -
® examples of non-pure functions

® roll a dice
® current time

® position of cursor
[

pure languages permit to define only pure functions

Haskell is a pure language

RT et al. (DCS @ UIBK)

Evaluation Order
® there are several ways to evaluate expressions, consider square x = x * x

square (5 + 3)

/ ™~

(5 +3) x (5+ 3) square 8

N

8 x (5 + 3) (5 +3) %8

\\

8 * 8

l

64

® in pure languages, the evaluation order has no impact on resulting normal form

® normal form: an expression that cannot be evaluated further, a result

Theorem

Whenever there are two (different) ways to evaluate a Haskell expression to normal form, then
the resulting normal forms are identical.

RT et al. (DCS @ UIBK) Week 11 7/25

Week 11 5/25

Pure Functions and 1/0

RT et al. (DCS @ UIBK)

even |/O is pure in Haskell

consider main = getLine >>= putStrLn ("Hello " ++)

it seems that the result depends on user input, so is not pure

I0 (), so the functional value of main is not what is entered and
printed during execution, but the value is of type I0 (), i.e., a sequence of actions that
are executed when running the program; and indeed this sequence is always the same:

however main ::

first read some input 4 and then print the string "Hello 4"

alternative argumentation: interpret type I0 a a state transformer on the outside world,
e.g., as a function of type RealWorld -> (RealWorld, a)

remark: in the remainder of this lecture we will only consider purely functional programs
without 1/0

Week 11

Standard Evaluation Strategies

RT et al. (DCS @ UIBK)

each functional language fixes the evaluation order via some evaluation strategy
three prominent evaluation strategies (expressions represented as trees and dags)
® call-by-value / strict / innermost: first evaluate arguments

square square *
I I / N\
square (5+3) = + = 8 = 8 8 = 64
/ N\
5 3
e call-by-name / non-strict / outermost: directly replace function application by rhs
square * * *
I / N\ / N\ /\
square (5+3) = + =+ + =+ 8 = 88 =64
/ N\ I\ I\ /\
5 3 5353 53
® call-by-need / lazy evaluation: like call-by-name + sharing (dags = directed acyclic graphs)
square * *
() ()
square (5+3) = + = + = 8 = 64
/ N\ / N\

Week 11

6/25

8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Evaluation Strategy of Haskell

® sharing is applied whenever a variable occurs multiple times
® example: consider definition f x = g x + g (3 + 5) + x

Haskell uses lazy evaluation with left-to-right argument order

® when evaluating £ (1 + 2) = g (1 + 2) + g (3 + 5) + (1 + 2) the two occurrences

of 1 + 2 are shared: they use the same variable x

® when evaluating £ (3 + 5) = g (3 +5) + g (3 + 5) + (3 + 5) the two occurrences
of g (3 + 5) are not shared: it was a coincidence that x was substituted by 3 + 5 and this

equality is not detected at runtime

® there might be further sharing (depending on the compiler), e.g. sharing common
subexpressions such as the expression g x in a function definition f x = g x + h (g x)

® argument evaluation within function invocation f expri

exprl is mainly triggered

by pattern matching, i.e., the process of finding the suitable defining equation

f patl

. patN = expr, cf. slides 13 and 15 of week 3

® many builtin arithmetic functions will trigger evaluation of all arguments, e.g.,
Integer) * undefined will result in error, and not in O

©

RT et al. (DCS @ UIBK)

Comparison of Evaluation Strategies

® call-by-value

easy to understand
easy to implement

overhead in evaluating non-required expressions
used in many functional programming languages

® |azy evaluation

® overhead in computing with thunks

harder to understand

single evaluation step is more complicated to implement:

9/25

pass arguments that are unevaluated expressions (thunks) instead of just values

® allows programmers to naturally define and work with infinite data
® used in Haskell

RT et al. (DCS @ UIBK)

11/25

Evaluation Strategy and Termination

® consider the following Haskell script

three :: Integer -> Integer
three x = 3

inf :: Integer
inf = 1 + inf

strict evaluation does not terminate, i.e., it will evaluate forever
three inf = three (1 + inf) = three (1 + (1 + inf)) = ...

non-strict and lazy evaluation are immediately done

three inf = 3

Theorem

every evaluation strategy

RT et al. (DCS @ UIBK)

Tail Recursion and Strict Evaluation

RT et al. (DCS @ UIBK)

e if the evaluation of an expression terminates for some evaluation strategy, then it
terminates using non-strict or lazy evaluation

Week 11

Week 11

® if the evaluation of an expression terminates using strict evaluation, then it terminates for

10/25

12/25

http://cl-informatik.uibk.ac.at/teaching/ws23/fp//slides/03x1.pdf#page=13
http://cl-informatik.uibk.ac.at/teaching/ws23/fp//slides/03x1.pdf#page=15
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Kinds of Recursion

® a function calling itself is recursive

e functions that mutually call each other are mutually recursive

even n | n == = True
| otherwise = odd (n - 1)
oddn | n == = False

| otherwise = even (n - 1)
® nested recursion: recursive calls inside recursive calls
acknm | n==0=m+1
| m == =ack (n - 1) 1
| otherwise = ack (n - 1) (ack n (m - 1))
e linear recursion: at most one recursive call (per if-then-else branch)
® fibn | n > 2 = fib (n - 1) + fib (n - 2)
® length (x : xs) = 1 + length xs
® f x = if even x then f (x “div™ 2) else f (3 * x + 1)
® tail recursion and guarded recursion will be discussed in more detail

RT et al. (DCS @ UIBK) Week 11

Example: Advantage of Tail Recursion
® |inear but not tail recursive variant
sumRec 0 = 0
sumRec n = n + sumRec (n - 1)

sumRec 5 = 5 + sumRec (5 - 1)
=5 + sumRec 4 = 5 + (4 + sumRec (4 - 1))
=5+ (4 + sumRec 3) = 5 + (4 + (3 + sumRec (3 - 1))) = ...
=5+ 4+ @+ @2+ +0))))=...=15 -- linear space
® tail recursive variant using accumulator to store intermediate results
sumTr n = aux 0 n where
aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)

sumTr 5
= aux 0 5 = aux (0 + 5) (6 - 1)
=aux 54 = aux (5 +4) (4 - 1)
. =15

= aux 9 3

-- constant space, implement as loop with two variables: acc and n

RT et al. (DCS @ UIBK) Week 11

Tail Recursion

® tail recursion is special form of linear recursion

additional requirement
® recursive function calls happen at the outermost level
® however, they can be within an if-then-else

® examples

® length (x : xs) = 1 + length xs
® f x = if even x then f (x “div’ 2) else f (3 * x + 1)

advantage of tail recursion
® no dangling function calls
® can be evaluated as loop
® space efficient

R x

13/25 RT et al. (DCS @ UIBK) Week 11

Problem of Tail Recursion using Lazy Evaluation

sumTr n = aux O n where
aux acc 0 = acc
aux acc n = aux (acc + n) (n - 1)
® example evaluation of sumTr on previous slide used call-by-value
® in lazy evaluation acc and n are only evaluated on demand
® causes linear memory consumption in sumTr
sumTr 5 -- with lazy evaluation
=aux 0 5
= aux (0 +5) (6 - 1)
= aux (0 + 5) 4
= aux ((0 +5) +4) (4 -1)

= aux ((((C0O +5) +4) +3) +2) +1)0
= ((((0O+5) +4) +3) +2) +1=...=15

15/25 RT et al. (DCS @ UIBK) Week 11

N x

14/25

16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Enforcing Evaluation

Haskell function to enforce evaluation: seq :: a => b -> b

evaluation of seq x y first evaluates x to WHNF and then returns y

® WHNF: weak head normal form
® expression e is in WHNF iff it has one of the following three shapes
® ¢ =Cexprl ... exprN for some constructor C (constructor application)
® e = f exprl ... exprN if the defining equations of £ have M > N arguments, i.e., they
are of the form f patl ... patM = expr (too few arguments)
® ¢ =\ patl ... patlN -> expr (A-abstraction)
® examples
® in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),
(++ undefined), \ x -> undefined
® not in WHNF: [1] ++ [2], (\ x -> x + 1) (1 + 2), undefined ++ undefined
® evaluation: let x = 1 + 2 in seq x (f x)
=seq (1 +2) (£ (1 + 2)) -- with 1 + 2 shared
= seq 3 (f 3) -- seq enforced evaluation of argument
=f3=... -- evaluation of f 3 continues
RT et al. (DCS @ UIBK) Week 11 17/25

Enforcing Strict Evaluation ... Continued

RT et al.

besides seq, there are other options to enforce strict evaluation
strict library functions like a strict version of foldl:
Data.List.foldl' :: (b => a => b) => b => [a] -> b
import Data.List

length = foldl' (\ x _ => x + 1) 0

pattern matching with bang patterns to enforce evaluation, e.g.,
aux acc n = let 'accN = acc + n in aux accN (n - 1)

strict datatypes

see https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/
strict.html for further details

(DCS @ UIBK) Week 11 19/25

Example Application using seq

® solve memory problem in tail recursion by enforcing evaluation of accumulator
sumTrSeq n = aux O n where

aux acc 0O
aux acc n

sumTrSeq 5
05
accN = 0 + 5 in seq accN (aux accN (56 - 1))

= aux
= let
= seq
= seq
= aux
= aux
= let
= seq
= seq
= aux

(0 +

acc

let accN = acc + n in seq accN (aux accN (n - 1))

5) (aux (0 + 5) (56 - 1))

5 (aux 5 (5 - 1))

5

(6 -1

5 4
accN = 5 + 4 in seq accN (aux accN (4 - 1))
(5 +4) (aux (5 + 4) (4 - 1))

9
9

RT et al. (DCS @ UIBK)

RT et al. (DCS @ UIBK)

(aux 9
4 -1
15

-- 0 + 5 is shared
-- and evaluated

-- pattern matching triggers evaluation

4 -1

—— Same

Week 11

Lazy Evaluation and Infinite Lists

Week 11

-- 5 + 4 is shared

-- and evaluated
structure as above
-- constant space

18/25

20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/strict.html
https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/strict.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Guarded Recursion Infinite Lists

. S . " e infinite lists ~ sequences of elements (also known as streams)
® every recursive call is inside (“guarded by") a constructor i T i .
® programming with infinite lists: producing and consuming elements of sequences one

® also known as “tail recursion modulo cons” . .
after another (e.g., with guarded recursion)

® more important than tail recursion in Haskell o example: [x..] = x : [x + 1 ..] generates infinite list

* allows the result to be consumed lazily = tail recursion provides the result only at the end ® in combination with lazy evaluation, infinite lists do not always cause non-termination

® examples . |
map f (x:xs) = f x : map f xs 4 o
® reverse xs = revAux xs [] where = take 2 (7 : [8..])
revhux [] ys = ys X =7 : take 1 [8..]
revAux (x : xs) ys = revAux xs (x : ys) =7 : 8 : take 0 [9..]
® enumFrom x = x : enumFrom (x + 1) 4 = [7, 8]

® remarks on F
remarks on emtnrom takeWhile (< 95) $ map (\ x -> x * x) [0..]

® above definition is simplified, actual definition works for members of type class Enum, e.g., _ = [0.1.4,9,16,25,36,49 64,81]

Int, Char, Integer, Double, ...and prevents overflows
L4 syntactic sugar: [x..] = enumFrom x filter (< 100) $ map (\ x -> x * x) [0..]
= ... =1[0,1,4,9,16,25,36,49,64,81 -- interrupted
RT et al. (DCS @ UIBK) Week 11 21/25 RT etal. (DCS @ UIBK) Week 11 22/25

Laziness and Infinite Data Structures Facilitate Modularity

. Sieve of Eratosthenes
® separation of concerns

® write small functions with specific tasks ® goal: generate list of all prime numbers

® use potentially infinite data structures ® algorithm
® example: find index of first list element satisfying predicate 1. start with list of all natural numbers (from 2 on)
® function firstIndex :: (a -> Bool) -> [a] -> Int 2. mark first element x as prime
® in Haskell 3. remove all multiples of x
firstIndex p = fst . head . filter (p . snd) . zip [0..] 4. go to Step 2
° (Iazy.) evaluation (without showing expansion of (.) and ($)) e in Haskell
firstIndex (== 1) [1..9] .
= fst . head . filter ((== 1) . snd) $ zip [0..] [1..9] primes :: [Integer]
= fst . head . filter ((== 1) . snd) $ (0,1) : zip [1..] [2..9] primes = sieve [2..] where
= fst . head $ (0,1) : filter ((== 1) . snd) $ zip [1..] [2..9] sieve (x : xs) = x : sieve (filter (\ y -> y "mod™ x /= 0) xs)
= fst (0,1)
=.O))) o) > take 1000 primes -- the first 1000 primes
® without laziness several complete list traversals are required when using library functions > takeWhile (< 1000) primes -- all primes below 1000

(e.g., computation of length and addition of indices)
® remark: firstIndex works for arbitrary lists as input: finite and infinite

RT et al. (DCS @ UIBK) Week 11 23/25 RT et al. (DCS @ UIBK) Week 11 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

® in pure functional languages such as Haskell the result does not depend on the evaluation
strategy

different kinds of recursion

® tail recursion is usually efficient as it can be implemented as loop

® seq can be used to enforce strict evaluation (in particular of accumulators)
® |azy evaluation allows modeling of infinite lists

® guarded recursion is important for algorithms on infinite lists

® infinite lists permit to naturally formulate several algorithms
(without having to take care of boundary conditions)

RT et al. (DCS @ UIBK) Week 11 25/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Evaluation Strategies
	
	Tail Recursion and Strict Evaluation
	
	Lazy Evaluation and Infinite Lists
	

