\square universität innsbruck

Functional Programming

Week 11 - Lazy Evaluation, Infinite Lists
René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner
Department of Computer Science

Monads

- bind (>>=), return, and do-notation are not restricted to I/O
- there exists a more general concept of monads
- example: also the Maybe-type is a monad
data Expr $=$ Const Double | Div Expr Expr
eval :: Expr -> Maybe Double
eval (Const c) = return c
eval (Div expr1 expr2) = do
x1 <- eval expr1
x2 <- eval expr2
if $\mathrm{x} 2=0$
then Nothing
else return (x1 / x2)
- monads won't be covered here, but they are the reason why the Haskell literature speaks about the I/O-monad

Last Lecture

- IO a is type of I/O-actions with resulting type a
- do-blocks are used for sequential composition of I/O-actions
- clear separation between purely functional and I/O-code:
- embed functional code into I/O: return : : a -> IO a
- the other direction is not available: no function of type IO a $->$ a
- ghc compiles programs that provide main : : IO () function in module Main
- example application: connect four
- user-interface: I/O-code
- game logic: purely functional

Evaluation Strategies

Pure Functions

- a function is pure if it always returns same result on same input
- pure functions are similar to mathematical functions
- examples of pure functions
- addition
- sort a list
-
- examples of non-pure functions
- roll a dice
current time
- position of cursor
- ...
- pure languages permit to define only pure functions
- Haskell is a pure language

RT et al. (DCS @ UIBK) \qquad eek 11

Evaluation Order

- there are several ways to evaluate expressions, consider square $\mathrm{x}=\mathrm{x} * \mathrm{x}$

- in pure languages, the evaluation order has no impact on resulting normal form
- normal form: an expression that cannot be evaluated further, a result

Theorem

Whenever there are two (different) ways to evaluate a Haskell expression to normal form, then the resulting normal forms are identical.

Pure Functions and I/O

- even I/O is pure in Haskell
- consider main = getLine >>= putStrLn . ("Hello " ++)
- it seems that the result depends on user input, so is not pure
- however main : : IO (), so the functional value of main is not what is entered and printed during execution, but the value is of type IO (), i.e., a sequence of actions that are executed when running the program; and indeed this sequence is always the same:
first read some input i and then print the string "Hello i "
- alternative argumentation: interpret type IO a a state transformer on the outside world e.g., as a function of type RealWorld $->$ (RealWorld, a)
- remark: in the remainder of this lecture we will only consider purely functional programs without I/O

Standard Evaluation Strategies

- each functional language fixes the evaluation order via some evaluation strategy
- three prominent evaluation strategies (expressions represented as trees and dags)
- call-by-value / strict / innermost: first evaluate arguments

- call-by-name / non-strict / outermost: directly replace function application by rhs

- call-by-need / lazy evaluation: like call-by-name + sharing (dags $=$ directed acyclic graphs)

RT et al. (DCS © UIBK)

Evaluation Strategy of Haskell

- Haskell uses lazy evaluation with left-to-right argument order
- sharing is applied whenever a variable occurs multiple times
- example: consider definition $f x=g x+g(3+5)+x$
- when evaluating $f(1+2)=g(1+2)+g(3+5)+(1+2)$ the two occurrences of $1+2$ are shared: they use the same variable x
- when evaluating $f(3+5)=g(3+5)+g(3+5)+(3+5)$ the two occurrences of $g(3+5)$ are not shared: it was a coincidence that x was substituted by $3+5$ and this equality is not detected at runtime
- there might be further sharing (depending on the compiler), e.g. sharing common subexpressions such as the expression $g \mathrm{x}$ in a function definition $\mathrm{f} x=\mathrm{gx}+\mathrm{h}(\mathrm{g} \mathrm{x})$
- argument evaluation within function invocation f expr1 ... exprN is mainly triggered by pattern matching, i.e., the process of finding the suitable defining equation f pat1 ... patN $=$ expr, cf. slides 13 and 15 of week 3
- many builtin arithmetic functions will trigger evaluation of all arguments, e.g., (0 :: Integer) * undefined will result in error, and not in 0

$$
\text { Week } 11
$$

Comparison of Evaluation Strategies

- call-by-value
- easy to understand
- easy to implement
- overhead in evaluating non-required expressions
- used in many functional programming languages
- lazy evaluation
- harder to understand
- single evaluation step is more complicated to implement
pass arguments that are unevaluated expressions (thunks) instead of just values
- overhead in computing with thunks
- allows programmers to naturally define and work with infinite data
- used in Haskell

Evaluation Strategy and Termination

- consider the following Haskell script
three :: Integer -> Integer
three $\mathrm{x}=3$
inf :: Integer
inf = 1 + inf
- strict evaluation does not terminate, i.e., it will evaluate forever three inf $=$ three $(1+i n f)=$ three $(1+(1+i n f))=\ldots$
- non-strict and lazy evaluation are immediately done three inf $=3$

Theorem

- if the evaluation of an expression terminates for some evaluation strategy, then it terminates using non-strict or lazy evaluation
- if the evaluation of an expression terminates using strict evaluation, then it terminates for every evaluation strategy
RT et al. (DCS @ UIBK) Week 11

Tail Recursion and Strict Evaluation

Different Kinds of Recursion

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive

even n	$\mid n==0$	$=$ True
\| otherwise	$=$ odd $(n-1)$	
odd $n ~$	$n==0$	$=$ False
	\| otherwise	$=$ even $(n-1)$

- nested recursion: recursive calls inside recursive calls
acknm|n=0 $0=m+1$

$$
\begin{aligned}
& \mid m==0=\operatorname{ack}(n-1) 1 \\
& \mid \text { otherwise }=\operatorname{ack}(n-1)(\text { ack } n(m-1))
\end{aligned}
$$

- linear recursion: at most one recursive call (per if-then-else branch)
- fib $n|n\rangle=2=f i b(n-1)+f i b(n-2)$
- length ($\mathrm{x}: \mathrm{xs}$) $=1+$ length xs
- $f x=$ if even x then $f(x$ 'div` 2) else $f(3 * x+1)$
- tail recursion and guarded recursion will be discussed in more detail

Example: Advantage of Tail Recursion

- linear but not tail recursive variant
sumRec $0=0$
sumRec $n=n+\operatorname{sumRec}(n-1)$
sumRec $5=5+\operatorname{sumRec}(5-1)$
$=5+$ sumRec $4=5+(4+$ sumRec $(4-1))$
$=5+(4+\operatorname{sumRec} 3)=5+(4+(3+\operatorname{sumRec}(3-1)))=\ldots$
$=5+(4+(3+(2+(1+0))))=\ldots=15$-- linear space
- tail recursive variant using accumulator to store intermediate results sumTr $\mathrm{n}=$ aux 0 n where
aux acc $0=$ acc
aux acc $n=\operatorname{aux}(\operatorname{acc}+n)(n-1)$
sumTr 5
$=\operatorname{aux} 05=\operatorname{aux}(0+5)(5-1)$
$=\operatorname{aux} 54=\operatorname{aux}(5+4)(4-1)$
$=\operatorname{aux} 93=\ldots=15$
-- constant space, implement as loop with two variables: acc and n RT et al. (DCS © UiBK) Week 11

Tail Recursion

- tail recursion is special form of linear recursion
- additional requirement
- recursive function calls happen at the outermost level
- however, they can be within an if-then-else
- examples
- length ($\mathrm{x}: \mathrm{xs}$) $=1+$ length xs .
- advantage of tail recursion
- no dangling function calls
- can be evaluated as loop
- space efficient

Problem of Tail Recursion using Lazy Evaluation sumTr n = aux 0 n where
aux acc $0=$ acc
aux acc $n=\operatorname{aux}(a c c+n)(n-1)$

- example evaluation of sumTr on previous slide used call-by-value
- in lazy evaluation acc and n are only evaluated on demand
- causes linear memory consumption in sumTr
sumTr 5
-- with lazy evaluation
$=\operatorname{aux} 05$
$=$ aux $(0+5)(5-1)$
$=$ aux $(0+5) 4$
$=\operatorname{aux}((0+5)+4)(4-1)$
= ...
$=\operatorname{aux}(((((0+5)+4)+3)+2)+1) 0$
$=(((0+5)+4)+3)+2)+1=\ldots=15$

Enforcing Evaluation

- Haskell function to enforce evaluation: seq : : a -> b -> b
- evaluation of seq $\mathrm{x} y$ first evaluates x to WHNF and then returns y
- WHNF: weak head normal form
- expression e is in WHNF iff it has one of the following three shapes
- e = C expr1 \ldots exprN for some constructor C
(constructor application)
- e = f expr $1 \ldots$ exprN if the defining equations of f have $M>N$ arguments, i.e., they are of the form f pat1 \ldots patM $=$ expr
(too few arguments)
- e = \ pat1 ... patN -> expr
(λ-abstraction)
- examples
- in WHNF: True, 7.1, (5+1) : [1] ++ [2], (:), undefined : undefined, (++),
(++ undefined), \x \rightarrow undefined
- not in WHNF: [1] ++ [2], $(\backslash x \rightarrow x+1)(1+2)$, undefined ++ undefined
- evaluation: let $\mathrm{x}=1+2$ in seq x (f x)
$=\operatorname{seq}(1+2)(f(1+2))$
-- with 1 + 2 shared
$=\operatorname{seq} 3$ (f 3)
-- seq enforced evaluation of argument
$=f 3=\ldots$.
-- evaluation of $f 3$ continues
RT et al. (DCS @ UIBK) \qquad

Enforcing Strict Evaluation ... Continued

- besides seq, there are other options to enforce strict evaluation
- strict library functions like a strict version of foldl:

Data.List.foldl' : : (b -> a $->\mathrm{b})$-> b $->$ [a] $->\mathrm{b}$
import Data.List
length = foldl' ($\backslash \mathrm{x}$ _ $->\mathrm{x}+1$) 0

- pattern matching with bang patterns to enforce evaluation, e.g., aux $\operatorname{acc} \mathrm{n}=$ let !accN $=\operatorname{acc}+\mathrm{n}$ in aux $\operatorname{accN}(\mathrm{n}-1)$
- strict datatypes
- see https://downloads.haskell.org/~ghc/9.2.5/docs/html/users_guide/exts/ strict.html for further details

Example Application using seq

- solve memory problem in tail recursion by enforcing evaluation of accumulator sumTrSeq $n=$ aux $0 n$ where

$$
\text { aux acc } 0=\operatorname{acc}
$$

aux acc $n=$ let $a c c N=a c c+n$ in seq accN (aux accN (n - 1))
sumTrSeq 5
= aux 05
$=$ let $\operatorname{accN}=0+5$ in seq accN (aux accN (5-1))
$=\operatorname{seq}(0+5)(\operatorname{aux}(0+5)(5-1))$
-- 0 + 5 is shared
$=$ seq $5(\operatorname{aux} 5(5-1))$
-- and evaluated
$=\operatorname{aux} 5(5-1)$
= aux 54
-- pattern matching triggers evaluation
= let $\operatorname{accN}=5+4$ in seq accN (aux accN (4-1))
$=\operatorname{seq}(5+4)(\operatorname{aux}(5+4)(4-1)) \quad--5+4$ is shared
$=$ seq 9 (aux $9(4-1)) \quad--$ and evaluated
$=$ aux $9(4-1) \quad-$ same structure as above
= ... = 15
-- constant space

Guarded Recursion

- every recursive call is inside ("guarded by") a constructor
- also known as "tail recursion modulo cons"
- more important than tail recursion in Haskell
- allows the result to be consumed lazily - tail recursion provides the result only at the end
- examples
- map f [] $=[]$
$\operatorname{map} f(x: x s)=f x: \operatorname{map} f x s$
- reverse xs = revAux xs [] where
revAux [] ys = ys
revAux ($\mathrm{x}: \mathrm{xs}$) ys = revAux $\mathrm{xs}(\mathrm{x}: \mathrm{ys})$
- enumFrom $x=x$: enumFrom $(x+1)$
- remarks on enumFrom
- above definition is simplified, actual definition works for members of type class Enum, e.g., Int, Char, Integer, Double, ... and prevents overflows
- syntactic sugar: [x..] = enumFrom x

RT et al. (DCS @ UIBK)

$$
\text { Week } 11
$$

Laziness and Infinite Data Structures Facilitate Modularity

- separation of concerns
- write small functions with specific tasks
- use potentially infinite data structures
- example: find index of first list element satisfying predicate
- function firstIndex : : (a -> Bool) -> [a] -> Int
- in Haskell
firstIndex $p=$ fst . head . filter (p . snd) . zip [0..]
- (lazy) evaluation (without showing expansion of (.) and (\$)) firstIndex (== 1) [1..9]
$=$ fst . head . filter $((==1)$. snd) $\$$ zip [0..] [1..9]
$=$ fst . head . filter $((==1)$. snd) $\$(0,1)$: zip [1..] [2..9]
$=$ fst . head $\$(0,1)$: filter ($(==1)$. snd) \$ zip [1..] [2..9]
$=$ fst (0,1)
$=0$
- without laziness several complete list traversals are required when using library functions (e.g., computation of length and addition of indices)
- remark: firstIndex works for arbitrary lists as input: finite and infinite

Infinite Lists

- infinite lists \sim sequences of elements (also known as streams)
- programming with infinite lists: producing and consuming elements of sequences one after another (e.g., with guarded recursion)
- example: [x..] = x : [x + 1 ..] generates infinite list
- in combination with lazy evaluation, infinite lists do not always cause non-termination
- examples
take 2 [7..]
= take 2 (7: [8..])
= 7 : take 1 [8..]
= 7 : 8 : take 0 [9..]
$=[7,8]$
takeWhile (< 95) \$ map ($\backslash \mathrm{x} \rightarrow \mathrm{x} * \mathrm{x}$) [0..]
$=\ldots=[0,1,4,9,16,25,36,49,64,81]$
filter (< 100) $\$ \operatorname{map}(\backslash x->x * x)$ [0..]

Sieve of Eratosthenes

- goal: generate list of all prime numbers
- algorithm

1. start with list of all natural numbers (from 2 on)
2. mark first element x as prime
3. remove all multiples of x
4. go to Step 2

- in Haskell
primes :: [Integer]
primes = sieve [2..] where
sieve ($\mathrm{x}: \mathrm{xs}$) = x : sieve (filter ($\backslash \mathrm{y} \rightarrow \mathrm{y} \times \bmod \mathrm{x} /=0$) xs)
> take 1000 primes -- the first 1000 primes
> takeWhile (< 1000) primes -- all primes below 1000

Summary

- in pure functional languages such as Haskell the result does not depend on the evaluation strategy
- different kinds of recursion
- tail recursion is usually efficient as it can be implemented as loop
- seq can be used to enforce strict evaluation (in particular of accumulators)
- lazy evaluation allows modeling of infinite lists
- guarded recursion is important for algorithms on infinite lists
- infinite lists permit to naturally formulate several algorithms (without having to take care of boundary conditions)

