
WS 2023/2024

Functional Programming
Week 12 – Cyclic Data Structures, Abstract Data Types

René Thiemann James Fox Lukas Hofbauer Christian Sternagel Tobias Niederbrunner

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws23/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/


Last Lecture – Evaluation Strategies
• evaluation strategies determine order of evaluation

• three kinds: innermost, outermost, and lazy evaluation (outermost + sharing)
• in pure functional languages the result does not depend on the evaluation strategy

• consider non-pure language with function uNum :: Int that asks the user for a number and
returns it

• what is result of evaluating
f uNum where f x = x - x

if the user will enter the two numbers 5 and 3?
• outermost (left-to-right): f uNum = uNum - uNum = 5 - uNum = 5 - 3 = 2
• outermost (right-to-left): f uNum = uNum - uNum = uNum - 5 = 3 - 5 = -2
• innermost: f uNum = f 5 = 5 - 5 = 0

• tail recursion in combination with innermost strategy can be implemented as loop
• seq a b enforces evaluation of a to WHNF and then results in b

• pitfall: in the following Haskell program, seq does not have the required effect
sumAux acc 0 = acc

sumAux acc n = let accN = acc + n in sumAux (seq accN accN) (n - 1)

-- correct: = let accN = acc + n in seq accN (sumAux accN (n - 1))

RT et al. (DCS @ UIBK) Week 12 2/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Last Lecture – Lazy Evaluation and Infinite Data Structures

• it is possible to define infinite lists, trees, etc., e.g.,
enumFrom x = x : enumFrom (x + 1)

• finite parts of infinite lists can be accessed, e.g., via take, takeWhile, etc., and lazy
evaluation will not enforce computation of whole infinite list

• benefit: natural definition of several algorithms without having to worry about bounds,
lengths, etc.

• main algorithmic structure: guarded recursion so that new constructors are produced in
each recursive evaluation step

RT et al. (DCS @ UIBK) Week 12 3/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Cyclic Data Structures

RT et al. (DCS @ UIBK) Week 12 4/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Cyclic Lists

• aim: direct definition of infinite lists which are implicitly computed on demand via lazy
evaluation

• methodology: provide start of cyclic list and remaining cyclic list
• a first example: the infinite list of ones

• starting element is 1
• remaining list is the list of ones itself
• Haskell definition

ones :: [Integer]

ones = 1 : ones
• created cyclic data structure

:ones

1

RT et al. (DCS @ UIBK) Week 12 5/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Combination of Lists
• cyclic definitions may involve auxiliary functions such as map, filter, and zipWith

• example: the list of natural numbers: nats
• start is 0
• remainder is addition of the list of ones with natural numbers itself

0 1 2 3 4 5 ...

+ 1 1 1 1 1 1 ...

= 1 2 3 4 5 6 ... (= tail nats)

• in Haskell

nats :: [Integer]

nats = 0 : zipWith (+) nats ones
• created cyclic data structure: :nats

zipWith (+)0

:

1
RT et al. (DCS @ UIBK) Week 12 6/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Computing Fibonacci Numbers

• definition: fib(n) =


0, if n = 0

1, if n = 1

fib(n− 1) + fib(n− 2), otherwise

• efficient computation of Fibonacci numbers via cyclic lists

• two starting elements: 0 and 1

• remainder is tail(tail fibs) = fibs + tail fibs

0 1 1 2 3 5 8 ... -- fibs

+ 1 1 2 3 5 8 13 ... -- tail fibs

= 1 2 3 5 8 13 21 ... -- tail (tail fibs)

• in Haskell

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

• remark: two starting elements, since otherwise tail fibs in rhs cannot be evaluated

RT et al. (DCS @ UIBK) Week 12 7/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Fibonacci Numbers in Haskell
• implementation was given in first lecture (slide 19 of week 1)
fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

• cyclic definition of list, evaluation:

0 : 1 : zipWith (+) (tail )

= 0 : 1 : zipWith (+)

= 0 : 1 : zipWith (+) (0 : ) (1 : )

= 0 : 1 : 1 : zipWith (+)

= 0 : 1 : 1 : zipWith (+) (1 : ) (1 : )

= 0 : 1 : 1 : 2 : zipWith (+)

= 0 : 1 : 1 : 2 : zipWith (+) (1 : ) (2 : )
RT et al. (DCS @ UIBK) Week 12 8/24

http://cl-informatik.uibk.ac.at/teaching/ws23/fp//slides/01x1.pdf#page=19
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Infinite Data Structures Beyond Lists

• lists are not the only infinite data structure, e.g., there are also infinite trees (vertically
and/or horizontally)

• also cyclic trees can be defined, e.g., consider a tree that represents all (finite and
infinite) paths in the graph starting from node 1

2 3 41

• in Haskell we use a mutual recursive definition of four trees (Paths)

data Paths = Root Integer [Paths]

paths1 = Root 1 [paths2]

paths2 = Root 2 [paths1, paths3]

paths3 = Root 3 [paths2, paths4]

paths4 = Root 4 []

• access finite parts of infinite tree in the same way as for infinite lists;
example: analogy of “take first n elements of a potentially infinite list” would be a
function for computing “all paths of length up to n of an potentially infinite tree”

RT et al. (DCS @ UIBK) Week 12 9/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Abstract Data Types

RT et al. (DCS @ UIBK) Week 12 10/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Concrete and Abstract Datatypes

• concrete datatypes
• defined via data which defines values of that type
• user defines own operations on this type via pattern matching
• no need for primitive operations on that type
• examples: Rat, Person, Expr, Bool, [a], . . .

• abstract datatypes
• defined via their primitive operations
• usually no access to internal structure of representation of values
• pattern matching only via equality: f 5 = ... is equivalent to f x = if x == 5 ...
• abstraction barrier: internal structure can be easily changed
• meaning of operations usually specified
• examples: Char, Integer, Double, . . . which provide basic arithmetic operations and

conversion to strings

RT et al. (DCS @ UIBK) Week 12 11/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Abstract Datatype: Queues

• queues are useful in computer science: printer (jobs), web-server (requests), . . .
• queue provides the following operations

• empty :: Queue a – the empty queue for elements of type a
• isEmpty :: Queue a -> Bool – check whether queue is empty
• dequeue :: Queue a -> (a, Queue a) – remove head of queue
• enqueue :: a -> Queue a -> Queue a – add new element to end of queue

these operations in combination with their types are the signature of the abstract
datatype Queue a

• signature only gives idea about operations; more information can be specified via
axiomatic specification in the form of equations or formulas

• isEmpty empty
• not $ isEmpty $ enqueue x q
• dequeue (enqueue x empty) = (x, empty)
• not $ isEmpty q −→ dequeue q = (y, q') −→

dequeue (enqueue x q) = (y, enqueue x q')

RT et al. (DCS @ UIBK) Week 12 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Example Application for Queues: Tree-Traversals

• consider binary tree 8

4

7

2 12

9

2

11

17 8

• tree-traversal: visit all nodes, e.g., to search for node, or convert nodes to list
• in-order [2,7,12,4,9,8,2,17,11,8]
• depth-first search, pre-order [8,4,7,2,12,9,2,11,17,8]
• breadth-first search [8,4,2,7,9,11,2,12,17,8]

RT et al. (DCS @ UIBK) Week 12 13/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Tree Traversals in Haskell

data Tree a = Empty | Node (Tree a) a (Tree a)

inOrder :: Tree a -> [a]

inOrder Empty = []

inOrder (Node l n r) = inOrder l ++ [n] ++ inOrder r

-- preOrder is similar to inOrder

bfs :: Tree a -> [a]

bfs t = bfsMain (enqueue t empty) where

bfsMain :: Queue (Tree a) -> [a]

bfsMain q

| isEmpty q = []

| otherwise = let (t', q') = dequeue q in

case t' of

Empty -> bfsMain q'
Node l n r -> n : (bfsMain $ enqueue r $ enqueue l $ q')

RT et al. (DCS @ UIBK) Week 12 14/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Implementing an Abstract Datatype

• implementation has to provide the desired operations and must satisfy the specification
(informal text or axiomatic)

• empty :: Queue a
• isEmpty :: Queue a -> Bool
• dequeue :: Queue a -> (a, Queue a)
• enqueue :: a -> Queue a -> Queue a
• isEmpty empty
• not $ isEmpty $ enqueue x q
• dequeue (enqueue x empty) = (x, empty)
• not $ isEmpty q −→ dequeue q = (y, q') −→

dequeue (enqueue x q) = (y, enqueue x q')

• any implementation can be used, e.g., a basic one in the beginning, which might be
replaced by more efficient one later on

• if corner cases are not specified, implementation can choose freely, e.g., how dequeue
should behave on empty queues

• modules can be used to hide internals

RT et al. (DCS @ UIBK) Week 12 15/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


A Basic Implementation of Queues

module BasicQueue(Queue, empty, isEmpty, dequeue, enqueue) where

data Queue a = Empty | Enqueue a (Queue a)

empty = Empty

enqueue = Enqueue

isEmpty Empty = True

isEmpty (Enqueue x q) = False

dequeue (Enqueue x Empty) = (x, Empty)

dequeue (Enqueue x q) = (y, Enqueue x q') where

(y, q') = dequeue q

dequeue Empty = error "dequeue on empty queue"

• implementation is rather direct translation of specification

• empty and enqueue are implemented as constructors of queues, and exported; still the
constructors itself are not exported and so internal structure is not revealed, e.g.,
externally no pattern matching on queues is possible

RT et al. (DCS @ UIBK) Week 12 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Notes on the Basic Implementation of Queues

...

data Queue a = Empty | Enqueue a (Queue a)

isEmpty Empty = True

isEmpty (Enqueue x q) = False

dequeue (Enqueue x Empty) = (x, Empty)

dequeue (Enqueue x q) = (y, Enqueue x q') where

(y, q') = dequeue q

dequeue Empty = error "dequeue on empty queue"

• we did not prove that implementation meets the specification; will be covered in
• program verification (bsc), or
• interactive theorem proving (msc)

• implementation is inefficient, since first enqueuing n elements and then dequeueing n
elements requires ∼ 1

2n
2 evaluation steps

RT et al. (DCS @ UIBK) Week 12 17/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Towards a More Efficient Implementation of Queues
• previous queue-type is essentially a list where the list head represents the end of the
queue (queue = reversed list)

• assume customers 1, 2, 3 and 4 enqueue in that order, then the representation is
[4, 3, 2, 1]

• enqueuing is efficient since it just adds element in front of list

• dequeuing is expensive since it traverses and rebuilds whole list
• new version: store queue as pair of two lists: (front, rear)

• front part of queue (head of queue is head of list)
• rear part of queue in reverse order (tail of queue is head of list)
• invariant: whenever front part of queue is empty then whole queue is empty

• example queue with customers 1, 2, 3, 4 has multiple representations
• ([1,2,3,4], []) ✔
• ([1,2,3], [4]) ✔
• ([1], [4,3,2]) ✔
• ([], [4,3,2,1]) ✘

• advantage: often constant time access to both ends of queue
RT et al. (DCS @ UIBK) Week 12 18/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


More Efficient Implementation of Queues

module BetterQueue(Queue, empty, isEmpty, dequeue, enqueue) where

type Queue a = ([a], [a])

empty :: Queue a

empty = ([], [])

isEmpty :: Queue a -> Bool

isEmpty (front, _) = null front

enqueue :: a -> Queue a -> Queue a

enqueue x (front, rear) = maybeMtf (front, x : rear)

dequeue :: Queue a -> (a, Queue a)

dequeue ([], _) = error "dequeue on empty queue"

dequeue (x : front, rear) = (x, maybeMtf (front, rear))

maybeMtf ([], rear) = (reverse rear, [])

maybeMtf q = q

RT et al. (DCS @ UIBK) Week 12 19/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Efficiency of More Efficient Implementation

dequeue ([], _) = error "dequeue on empty queue"

dequeue (x : front, rear) = (x, maybeMtf (front, rear))

maybeMtf ([], rear) = (reverse rear, [])

maybeMtf q = q

• move-to-front operation required when front is empty (obey invariant)

• single move-to-front operation may be expensive, but these operations are rare

• efficiency: n queue operations require at most 2n evaluation steps

• proving technique: amortized cost analysis, will be covered in course algorithms and
data-structures

RT et al. (DCS @ UIBK) Week 12 20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Abstraction Barrier of More Efficient Implementation

module BetterQueue(Queue, empty, isEmpty, dequeue, enqueue) where

type Queue a = ([a], [a])

...

empty :: Queue a

...

• since type is just an abbreviation:
empty :: ([a], [a])

• since pairs and lists are visible, external users can completely inspect internal structure
and create queues which are not permitted, e.g., isEmpty ([], [4,3,2,1]) evaluates
to True

• since type is just an abbreviation, in particular Queue’s are instances of Eq, Show, and
Ord, which might not be intended

• simple solution: hide representation in new datatype
data Queue a = Queue ([a], [a])

RT et al. (DCS @ UIBK) Week 12 21/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Implementation with Separate Datatype

module DataQueue(Queue, empty, isEmpty, dequeue, enqueue) where

data Queue a = Queue ([a], [a]) -- new datatype

empty :: Queue a

empty = Queue ([], []) -- wrap Queue constructor around

isEmpty :: Queue a -> Bool

isEmpty (Queue (f, _)) = null f -- unwrap Queue constructor

queue = Queue . maybeMtf

enqueue :: a -> Queue a -> Queue a

enqueue x (Queue (f, r)) = queue (f, x : r)

dequeue :: Queue a -> (a, Queue a)

dequeue (Queue ([], _)) = error "dequeue on empty queue"

dequeue (Queue (x : f, r)) = (x, queue (f, r))

maybeMtf ([], r) = (reverse r, [])

maybeMtf q = q

RT et al. (DCS @ UIBK) Week 12 22/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Newtype

data Queue a = Queue ([a], [a])

queue = Queue . maybeMtf

enqueue :: a -> Queue a -> Queue a

enqueue x (Queue (f, r)) = queue (f, x : r)

...

• always wrapping and unwrapping the Queue constructor has some efficiency penalty

• more efficient version to hide an implementation type: newtype
• syntax: newtype TName tvars = CName typ

• only one constructor (CName) allowed
• this constructor must have exactly one argument type
• nearly equivalent to data TName tvars = CName typ,

one difference: newtype is faster (CName won’t be created at runtime)

• minimal change in implementation of queues
• newtype Queue a = Queue ([a], [a]) instead of
data Queue a = Queue ([a], [a])

RT et al. (DCS @ UIBK) Week 12 23/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Summary

• cyclic lists
• implicit definition of infinite lists
• can be used to elegantly and efficiently implement some functions (Fibonacci)

• abstract datatypes: specify operations with their properties;
introduces abstraction barriers that permit change of implementations

• example: different implementations of queues

• newtype is efficient variant of data in case there is only one constructor with one
argument

• example abstract datatypes
• known: Queue, Double, Char, Integer, . . .
• further examples: sets (Data.Set), stacks (Data.Stack), dictionaries (Data.Map), . . .

RT et al. (DCS @ UIBK) Week 12 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Cyclic Data Structures
	
	Abstract Data Types
	

