

Machine Learning for Theorem Proving Lecture 4 (VU)

Cezary Kaliszyk

Overview

Last Lecture

• Naive Bayes and k-NN

Today

- Syntactic methods for premise selection
- Linear Regression
- Random forests

We will look at an algorithm that does not actually learn from the proofs of theorems, but only looks at their statements.

This algorithm that is more used in automated systems and not in interactive provers. However, the MePo relevance filter is a very similar technique in proof assistants.

SInE: original idea by Hoder

Basic algorithm

If symbol s is d-relevant and appears in axiom a, then a and all symbols in a become d + 1-relevant.

Problem: Common Symbols

- Simple relevance usually selects all axioms
- Because of common symbols, such as subclass or subsumes subclass (beverage, liquid). subclass (chair, furniture).

Solution: Trigger based selection

"appears" is changed to "triggers"

But how to know if s is common?

Approximate by number of occurrences in the current problem

SInE: Tolerance

- Only symbols with t-times more occurrences than the least common symbol trigger an axiom
- For $t=\infty$ this is the same as relevance

```
subclass(X,Y) ∧ subclass(Y,Z) → subclass(X,Z)
subclass(petrol,liquid)
¬subclass(stone,liquid)
subclass(beverage,liquid)
subclass(beer,beverage)
subclass(guinness,beer)
subclass(pilsner,beer)
```

? subclass(beer,liquid)

[Hoder]

What are the symbol occurrence numbers and when are they triggered?

SInE: Tolerance

- Only symbols with t-times more occurrences than the least common symbol trigger an axiom
- For $t = \infty$ this is the same as relevance
- **1**: subclass(X,Y) \land subclass(Y,Z) \rightarrow subclass(X,Z)
 - subclass(petrol,liquid) ¬subclass(stone,liquid)
- 2: subclass(beverage,liquid)
- subclass(beer,beverage) subclass(guinness,beer) subclass(pilsner,beer)

Occ.	Symbols
7	subclass
3	liquid, beer
2	beverage
1	petrol, stone, guinness, pilsner

? subclass(beer,liquid)

SInE: Commentary

In the example, the right table lists symbol occurrences, the left table lists the rounds in which particular axioms are triggered. In two rounds exactly the needed axioms to prove the conjecture are triggered.

The next slide shows a number of tables that show the space reduction with Sine. Mizar Is a proof assistant developed in Poland (University of Białystok). It has one of the largest databases of facts and all are in a simple logic (close to first-order logic), and as such it is a very interesting benchmark for machine learning methods. SUMO is a manual encoding of a large ontology, which aims to describe many relations in the real world using first-order logic.

The slide shows that depending on the symbol density and size of statements, different values of parameters allow reducing the size of the bases using Sine appropriately.

SInE: Performance

Problem sizes:

problems	axioms	atoms	predicates	functions
SUMO	298,420	323,170	20	24,430
CYC	3,341,990	5,328,216	204,678	1,050,014
Mizar	44,925	332,143	2,328	6,115

SInE: Performance

Problem sizes:

problems	axioms	atoms	predicates	functions
SUMO	298,420	323,170	20	24,430
CYC	3,341,990	5,328,216	204,678	1,050,014
Mizar	44,925	332,143	2,328	6,115

CYC:

	t = 1.0		t = 1	= 1.2		.5	t = 2.0		t = 3.0		t = 5.0	
d = 1	29	1.17	35	1.09	41	1.05	47	1.02	60	1.02	72	1.01
d = 2	142	1.25	287	1.07	442	1.03	607	1.01	1027	1.00	1476	1.00
d = 3	505	1.32	937	1.13	1451	1.07	2484	1.02	5311	1.01	10482	1.01
d = 4	1784	1.41	3232	1.20	5716	1.10	11603	1.02	29963	1.01	69015	1.01
d = 5	4432	1.57	8870	1.27	16806	1.13	37599	1.03	110186	1.02	249192	1.04
d = 7	10698	2.16	25607	1.50	56337	1.21	150277	1.06	431875	1.09	832935	1.10
$d = \infty$	36356	28.37	495360	3.33	1310965	1.34	1562064	1.20	1822427	1.12	2057597	1.07

Sumo:

Mizar:

$d \backslash t$	1.0	1.2	1.5	2.0	3.0	5.0	$d \backslash t$	1.0	1.2	1.5	2.0	3.0	5.0
1	4903	4911	4921	4936	-4973	5038	1	12	13	14	16	21	28
2	5296	5395	5553	5823	6427	7743	2	70	82	115	158	272	654
3	6118	6451	7068	8280	10841	16337	3	188	-230	372	762	1950	5980
4	6893	7556	9001	12176	18300	28878	4	-316	470	-942	3021	8720	23440
5	7432	8517	11165	16945	26842	37284	5	540	979	2417	8179	22644	52241
7	7897	9991	15788	26203	36507	41443	$\overline{7}$	1027	2708	8517	24445	54958	97481
∞	8047	15987	28353	35345	39389	41762	∞	1116	8361	26959	57322	82379	107926

SInE in E

How is SInE implemented in an actual theorem prover? E prover: Implementation: GSInE (in e_axfilter)

- Parameterizable filters
 - Different generality measures (frequency count, generosity, benevolence)
 - Different limits (absolute/relative size, # of iterations)
 - Different seeds (conjecture/hypotheses)
- Efficient implementation
 - E data types and libraries
 - Indexing (symbol ightarrow formula, formula ightarrow symbol)
- Multi-filter support
 - Parse & index once (amortize costs)
 - Apply different independent filters

Primary use

- Initial over-approximation (efficiently reduce huge inputs to manageable size)
- Secondary use: Filtering for individual E strategies

Linear Regression in Theorem Proving

Linear Regression in Theorem Proving

Summary

This Lecture

- Syntactic methods for premise selection
- Linear Regression

Next

- decision trees
- deep learning in theorem proving

Work Here / Homework

Feature Space

- Assume each symbol corresponds to a feature. What algorithms support such an unlimited space?
- Propose (implement) a way to reduce the space to an algorithm that does not.

Read Miller's HOL:

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/encyclopedia.pdf