
Machine Learning for Theorem Proving
Lecture 4 (VU)

Cezary Kaliszyk



Overview

Last Lecture

• Naive Bayes and k-NN

Today

• Syntactic methods for premise selection

• Linear Regression

• Random forests

1



SInE: introduction

We will look at an algorithm that does not actually learn from the proofs of theorems,
but only looks at their statements.

This algorithm that is more used in automated systems and not in interactive provers.
However, the MePo relevance filter is a very similar technique in proof assistants.

2



SInE: original idea by Hoder

Basic algorithm

If symbol s is d-relevant and appears in axiom a, then a and all symbols in a become
d+ 1-relevant.

Problem: Common Symbols

• Simple relevance usually selects all axioms

• Because of common symbols, such as subclass or subsumes

subclass (beverage, liquid).

subclass (chair, furniture).

Solution: Trigger based selection

“appears” is changed to “triggers”

But how to know if s is common?

Approximate by number of occurrences in the current problem
3



SInE: Tolerance
• Only symbols with t-times more occurrences than the least common symbol trigger

an axiom
• For t = ∞ this is the same as relevance

[Hoder] .

What are the symbol occurrence numbers and when are they triggered? 4



SInE: Tolerance
• Only symbols with t-times more occurrences than the least common symbol trigger

an axiom
• For t = ∞ this is the same as relevance

[Hoder] .

What are the symbol occurrence numbers and when are they triggered?

4



SInE: Commentary

In the example, the right table lists symbol occurrences, the left table lists the rounds in
which particular axioms are triggered. In two rounds exactly the needed axioms to
prove the conjecture are triggered.

The next slide shows a number of tables that show the space reduction with Sine. Mizar
Is a proof assistant developed in Poland (University of Białystok). It has one of the
largest databases of facts and all are in a simple logic (close to first-order logic), and as
such it is a very interesting benchmark for machine learning methods. SUMO is a
manual encoding of a large ontology, which aims to describe many relations in the real
world using first-order logic.

The slide shows that depending on the symbol density and size of statements, different
values of parameters allow reducing the size of the bases using Sine appropriately.

5



SInE: Performance
Problem sizes:

CYC:

Sumo: Mizar:

6



SInE: Performance
Problem sizes:

CYC:

Sumo: Mizar:

6



SInE in E
How is SInE implemented in an actual theorem prover? E prover:
Implementation: GSInE (in e_axfilter)

• Parameterizable filters
• Different generality measures (frequency count, generosity, benevolence)
• Different limits (absolute/relative size, # of iterations)
• Different seeds (conjecture/hypotheses)

• Efficient implementation
• E data types and libraries
• Indexing (symbol → formula, formula → symbol)

• Multi-filter support
• Parse & index once (amortize costs)
• Apply different independent filters

Primary use

• Initial over-approximation
(efficiently reduce huge inputs to manageable size)

• Secondary use: Filtering for individual E strategies
7



Linear Regression in Theorem Proving

Premises: Classification

• Dimensions in the input

• Matrix QR decomposition

Probabilities: Logistic

Non-linearity

• Kernels [Enigma]

• Multi-output Ranking [Kühlwein’14, ...]

State space reduction

• Random projections [VowpalWabbit]

• Decomposition

X1

X2

Y

8



Linear Regression in Theorem Proving

Premises: Classification

• Dimensions in the input

• Matrix QR decomposition

Probabilities: Logistic

Non-linearity

• Kernels [Enigma]

• Multi-output Ranking [Kühlwein’14, ...]

State space reduction

• Random projections [VowpalWabbit]

• Decomposition
X1

X2

Y

8



Summary

This Lecture

• Syntactic methods for premise selection

• Linear Regression

Next

• decision trees

• deep learning in theorem proving

9



Work Here / Homework

Feature Space

• Assume each symbol corresponds to a feature. What algorithms support such an
unlimited space?

• Propose (implement) a way to reduce the space to an algorithm that does not.

Read Miller’s HOL:

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/encyclopedia.pdf

10

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/encyclopedia.pdf

	.

